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Abstract:

In this research paper, we study and investigate the real life applications
of derivatives. This work is motivated by the work of Pielou, E.C. An introduction
to mathematical ecology, London-New York-Sydney: Wiley and Sons 1969,
Ackerman, E: Biophysical Science. Englewood Cliffs, N.J., Prentice-Hall 1962 and
Milhorn, H.T. The application of control theory to physiological systems, Phila-
delphia-London: Saunders 1966.
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Introduction :

. .. d
One of the most simplest differential equation is % =ay (1)
[18]
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where a is a constant. The integration is usually performed by a rather symbolic
procedure.

Hence, we obtain

y = c.explat) (2)
We call (2), the general solution of the differential equation.
In the same way, there are so many applications of derivatives in our real life.
Main Results :

1. Growth of a cell : Assume a cell is of mass m,,, in an ideal environment the cell
grows. Thus, its mass is a function of time, and we may write m = m(f) with m =m,,
at7=0.

Assume that chemicals pass quickly through the cell wall and that growth is
only determined by speed of metabolism inside the cell. Since, the output of
metabolism depends on the mass of participating molecules. It is reasonable to
expect that the growth rate is proportional to the mass at each time instant 1.e.,

d—m oo m
dt
dm _

with certain positive constant a of course, there is limitation: If the mass m of the
cell reached a certain size, the cell will divide rather than continue to grow.

Thus, we add a restriction, say m < m.

The given differential equation (3) is of the form (1). Thus, the general
solution follows from m = c.exp(at). By our assumption that m = m, at time instant
=0, we can determine ¢. We get ¢ = m,.

Hence, its P.I. of (3) is
m=my.exp(at) (4)

with above mentioned restriction m < m.
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With our assumptions we have gone slightly beyond experience. We have
introduced some theoretical arguments. It is customary to say that we are model-
making. Whether or not our model is biologically meaningful can only be tested by
experiments. Here and in subsequent models we share G.F. Gause’s view [ 1] (Gause,
1934, P. 10).

There is no doubt that growth is a biological problem, and that it ought to be
solved by experimentation and not at the desk of mathematician. But in order to
penetrate deeper into the nature of these phenomena, we must combine the experi-
mental method with mathematical theory, a possibility which has been created by
(brilliant researchers). The combination of experimental method with the quantita-
tive theory is in general one of the most powerful tools in the hands of contempo-
rary science. It is worth discussing the above growth model under different
aspects.

z—m was assumed to be proportional to m, we may introduce the relative
’
di
growth rate defined by L (5)
m dt

It is quotient of the absolute growth rate ij and the mass m. The differen-
tial equation (3) then states: at each time instant, the specific growth rate remains
constant.

For this: we assume that a plant which has reached the mass m =300g, grows
12g during the next 24 hours. Then average growth rate is % g/hours =0.5g/h. We
assume that the growth rate does not fluctuate, we may consider 0.5g/h as a good

o ’ dm
approximation of the instantaneous growth rate o

We may ask: Is this growth rate large or small? The answer depends very
much on the present mass of the plant. For a plant of mass m = 10g only, our growth
rate would be tremendous, where as for a large tree of living mass m = 1000kg the

same growth must be called tiny. Therefore, we have torelate 0.5g/h with the present
mass, in our case with 300g.
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The quotient is

0.5gh
300g

This quotient is called specific growth rate. With the same specific growth
rate, the tree of living mass 1000 kg would gain 1.7 kg/h.

0.0017h".

The specific growth rate is an important concept. There are two steps
involved. First, when forming jif we relate the increase of mass with time which

gives us some measure of velocity of growth. Second, we relate the velocity of
growth with the mass present. Let us consider another aspect of the differential
equation (4).

With increasing m, the growth rate j—?ﬁ also increases. The growth rate, in

turn, determines future values of m, thus, we have a simple example of a feedback
mechanism with a single loop :

v I

dm

m|(f) e
2. A birth process : Let N stand for the number of individuals an animal or plant
population. This number is time dependent so that we may write N = N(7). Strictly
speaking, N(f) takes only integral values and is discontinuous function of 7.
In microorganisms reproduction occurs by simple cell division. In multicellular

individuals, we distinguish between vegetative and sexual reproduction. We will
include all this possibilities in our study.

We assume that the proportion of reproductive individuals remains constant
in growing population. In addition, we assume constant fertility. Then rate of birth
is proportional to the number N(7) of individuals.

If we finally exclude death, emigration and immigration, the growth rate
coincides with the birth rate.
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dN_
Thus, . AN (6)

Where A is certain constant.

Referring to the concept introduced in (5), we may A the specific birth rate.
The differential equation (6) is of type (1).

Hence, N = N,.exp(At), where N, denotes the population size at 7= 0.

This birth process turns out to be quite realistic in a large population that
grows under ideal conditions.

In a small population, we can not expect that the occur renal of birth is
distributed evenly overtime. Instead, we face random fluctuations. Then the
process has to be modified in the light of probability theory. Such refined model is
called a stochastic birth process. See ([ 2], [3], [4], [5], [6]).

3. Birth-and-death process : Let us consider an animal or plant population under
the conditions outlined in the preceding application. Now, we will attend the model
by allowing for death. The net change in population size may be positive or nega-
tive. Within a time interval of length at, we get

net change = number of births - number of deaths.

AN=AB-AD

AN AB AD
= = -

At At Al

As 1n previous causes, we treat N = N(¢) as a continuous and differentiable
function of time even through this means only an approximation to reality. Similarly
we assume a large number of births and deaths so that the number of births B = B(7)
and of deaths D = D(#) may also be considered as differentiable functions.

dN _ dB _dD

Hlozss; di dt dt

(7)
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dN s ; ;
The rate -, may be positive or negative depending on whether occurrence

of birth or of death prevails. By hypothesis, the death rate also becomes propor-
tional to N(1).
db

dD
Thus, ——=AN,-2"=
us, > un,

A denoting the specific birth rate and 1 specific death rate.

Hence, = (A-wW)N
dt
= N= !\i’o.e(;ﬁ“"m‘r

Where N, stands for the population size at time = 0. When the birth rate prevails,
the population size increased exponentially. When A < p, the population size
decreases and the population will die out and A = p will the population remain
stable.

4. Radioactive decay : Let us assume that a substance contains only one sort of
radioactive atom. The simplest assumption about decay is that there exist no
preferred time for decay and that all atoms have the same chance of disintegration
independent of each other. We expect twice as many scintillations per time unit
with supply of twice as many atoms, three times as many scintillations with triple
amount of atoms, etc. in general, the model requires that the rate of decay is
proportional to the number N of radioactive atoms present i.e.
dN _

L= hN (8)

where A is certain positive constant called the decay constant.
Thus N=N,.e™
where N, devoting the original number of radioactive atoms at time /= 0.

5. Living tissue exposed to ionizing radiation : An ionizing beam of particle cosists
of either protons, neutrons, deceterons, electrons, y-ray quanta or the like. If high
polymers such as proteins or nucleic acids are hit by an ionizing beam, they may be
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irreversibly altered. New bonds may be formed between chains or existing bonds
may be broken. We simply say that polymers become damaged.

Let n,, be the original number of undamaged molecules of a specific chemical
compound which are present in cell and which are assumed to be susceptible to radia-
tion. Let D be the number ionizing particles which cross the unit area of the target.
We simply call D the dose of radiation. Let nbe the i, of undamaged molecules after
exposure to radiation (7 < ). The question then arises: How does n depend on the
dose? When » and D are large numbers, we may operate with these quantities as if
they were continuous variables. For this, we assume that » 1s a function of D.

Then we consider the rate% after exposure to different dose of radiation. Since,
dn

a higher dose inflicts more damage, the rate B

must be negative.

When building a model it is plausible to assume that% is proportional to 1.
In this case, we get
an — ¢ n 9)

where § denotes a certain positive constant. This equation is again of type (1). We
notice that the independent variable is not the time but the dose D.

Thus, n= nue'SD(see [7]. p. 305)

6. Radioactive tracer : Let us introduce some generalities on a very useful method
in biophysics, the compartment analysis. Milhorn ([8], p. 46) defines the compart-
ment in the following way-

If a substance is present in a biological system in several distinguish able
forms or locations, and if it passes from one form or location to another form or
location at a measurable rate, then each form or location constitutes a separate
compartment for the substance. Milhorn illustrates the special case of a single
compartment with a tracer dose of radioactive iodine injected into blood stream.
Let O, denote the original mass of iodine at time 7 =0 and denote the mass remain-
ing in the blood at time instant / by Q= ((¢). The blood stream plays the role of the
compartment. We assume that iodine is distributed evenly in the entire blood stream
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before any loss occurs. Part of the iodine leaves the blood and enters the urine. It is
plausible to assume that the rate of loss is proportional to Q(7) at each time instant
1. Hence, we may equate this rate to K, O where K| is a certain positive constant.
Another part of the iodine enters the thyroid gland at a rate which is also assumed
to proportional to O(¢). For this second rate we may write K, O(K, > 0). The total
rate of change is therefore

d _
L _K,0-K,0-K:0 (10)
= % = -KQ for simplicity,
the solution of the diff. equation is O = Qoe'k" (11)

i.e. the concentration of iodine in the blood decreases exponentially.

7. Dilution of a Substance : We consider a second problem that may be approached
via compartment analysis.

In a tube containing 2000g of water, 50g of sucrose are dissolved. By stir-
ring, the sucrose will be distributed evenly at all times. Through a pipe, 10g of
water flow into tube per minute, and through another pipe, 10g of water leave the
tube per minute removing some sucrose at the same time. We may ask: How does
the mass of sucrose decrease as a function of time?

B

Let M= M(t) be the mass of sucrose in the tube. By assumption, we have
M, = 50g at time 7 = 0. In 10g of water the mass of dissolved sucrose is

10

M- 3000

= (0.005)M



26 The Mathematics Education [Vol. LVI (1), March 22]

In a time interval of length A, the loss of sucrose from the tube amounts
AM = (-0.005)M At

Where M denotes a certain average of M(7) during the time interval. As A tends to
zero, we get for the rate of decrease

g= (-0.005)M (12)

dt
This implies an exponential decrease of sucrose. Our question is answered by the
function

M=M, o{0.005) (13)
Where 7 is measured in minutes.

8. Chemical Kinetics : Gaseous nitrogen pentoxide decomposes as stated by the
equation

2N,05—4NO,+0,

We are interested in the speed of this reaction when the temperature is kept
constant. Let (' = [N,0s] be the concentration of nitrogen pentoxide measure in
moles per liter. The concentration C'= ((f) is a decreasing function of time so that
the derivative dC'/dl is negative. This derivative 1s called the reaction rate.

The reaction rate depends on the concentration C'= [N, Os]. Intuitively we
expect that the higher the concentration is, the more frequently collisions of two
N, O5molecules will occur with the possible emergence of the new bonds NO, and
0,. One may theorize that under constant temperature the reaction rate is propor-
tional to C, that 1s,

dC

et 14
7 (14)

where & denotes a positive constant. The solution of this differential equation is

C=Cye™ (15)
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(', being the concentration of N, Os at time /= 0. The experimental facts are in
good agreement with this model. As (15) shows the concentration (' will asymptoti-
cally tend to zero. It will never reach zero exactly.
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