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Abstract:

In this study, a thorough mathematical framework for analysing functions
that translate complex numbers to fuzzy sets is presented. This framework repre-
sents a unique function of complex analysis and fuzzy set theory. These kinds of
functions are naturally produced in a variety of applications, such as quantum
physics, control theory, and signal processing, where there is a coexistence of
uncertainty and complex-valued systems. First, we will formally define fuzzy-val-
ued functions over the complex domain, and then we will investigate the essential
features of these functions, such as continuity, differentiability, and integrability.
Within the scope of this discussion, the idea of fuzzy boundaries is presented and
expanded upon in order to characterise convergence. In addition to this, we
investigate the structure of level sets and a-cuts that are linked to fuzzy pictures
of complicated functions. Our objective is to determine the role that these
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structures play in the process of visualising and comprehending fuzzy behaviour.
For the purpose of generalising classical ideas in complex function theory to the
fuzzy situation, analytical methods such as the extension principle and Zadeh's
representation theorem are utilised. There are examples supplied to illustrate the
practical ramifications and behaviour of various mappings, and these examples
are offered as illustrations. Through the completion of this study, a significant
gap between fuzzy mathematics and complex variable theory is bridged. This work
provides the framework for additional studies on the stability, approximation,
and computing approaches linked to fuzzy-valued complex functions.

Keywords: Mathematical, Mapping, Fuzzy Sets
Introduction:

In contemporary mathematical modelling, the interaction between uncertainty
and complex-valued systems is a topic that is gaining growing relevance. This is
particularly true in domains such as quantum physics, electrical engineering, and
complex dynamical systems. Despite the fact that many issues in the actual world
display vagueness or imprecision that cannot be effectively characterised
probabilistically, traditional approaches to dealing with uncertainty rely largely on
probability theory. When applied in situations like these, fuzzy set theory, which was
first presented by Lotfi A. Zadeh in 2015, offers an alternative that is both strong and
versatile. The mathematical representation of notions that are fundamentally
ambiguous is made possible by it, and it allows for partial membership rather than
binary categorisation. Complex analysis has been a major pillar in both pure and prac-
tical mathematics throughout the course of'its evolution, which has occurred concur-
rently with the development of fuzzy mathematics. Because of its sophistication and
depth in defining oscillatory behaviour, growth features, and transformations, it is a
vital tool in a wide variety of fields, including signal processing and fluid dynamics.
In spite of this, the unification of fuzzy set theory and complex analysis is still
relatively underexplored, particularly with regard to the rigorous study of functions
that transfer complex numbers to fuzzy sets. One of the key reasons for writing this
paper is to fill up this imaginary empty space. We present a mathematical analysis of
functions that take complex numbers as inputs and return fuzzy sets as outputs. These
functions are referred to as complex-to-fuzzy mappings, and we recommend that this
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analysis be performed. It is necessary to develop new definitions, tools, and interpre-
tations in order to accommodate these mappings, which expand the concept of real-
valued fuzzy functions to the complex domain. In the course of their research, they
are attempting to find a way to reconcile the exact structure of complex numbers
with the approximate and gradational character of fuzzy sets. In the beginning of this
work, a formal basis is established for fuzzy sets, fuzzy integers, and fuzzy-valued
functions, with a particular focus on complex domains. In the following step, we
study fundamental analytical features in this fuzzy-complex situation. These qualities
include continuity, differentiability, and integration. In order to define and analyse
these qualities, we utilise the Zadeh's extension principle and the level set (a-cut)
decomposition. This is due to the fact that fuzzy sets are not single-valued. In this
analysis, one of the most important aspects is to investigate the ways in which
standard conclusions in complex analysis, such as the Cauchy-Riemann equations,
analyticity, and contour integration, may be generalised or reinterpreted when the
codomain is a fuzzy set. As a result of the absence of a linear structure in the space of
fuzzy sets and the dependency of operations on a-levels, this generalisation is not an
easy matter. Additionally, we discuss the difficulties that arise when attempting to
define the limits and convergence of such functions. To this end, we present concepts
such as fuzzy convergence and fuzzy limits for sequences and functions that are
defined in the complex domain. The study of complex-to-fuzzy mappings has practi-
cal applications in addition to the academic interest that it now possesses. Having a
formal framework that takes into account the complicated structure of the system as
well as the uncertainty that is inherent in measurements or modeling assumptions can
be beneficial for systems that involve imprecise electrical impedances, uncertain
frequency response, or fuzzy wave propagation. In conclusion, the purpose of this
study is to establish the framework for a more in-depth mathematical investigation of
fuzzy functions dealing with complex values. Our goal is to provide new tools and
insights for both theoretical mathematics and real-world applications that involve
complex uncertainty. This will be accomplished by extending the classical theory of
complex functions into the fuzzy domain.

1. Literature Review:

The study of fuzzy-valued functions has been a developing field of
mathematical research ever since Lotfi A. Zadeh introduced fuzzy set theory in
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2015. This field of study has been under constant development. The work that he
did laid the groundwork for the idea of sets with progressive membership, which
offered a new mathematical framework for dealing with data that was imprecise
and ambiguous. There have been several applications of fuzzy set theory in the field
of mathematics over the course of several decades. Some of these applications
include fuzzy arithmetic, fuzzy topology, and fuzzy differential equations. On the
other hand, the practical application of these concepts within the realm of complex
function theory is yet largely unexplored.

Puri and Ralescu (2013), During the early stages of research on fuzzy func-
tions, the primary focus was on mappings from the real numbers R to fuzzy sets.
Through the use of the level set (or a-cut) representation, the idea of fuzzy-valued
functions was introduced, and an approach to fuzzy continuity and differentiability
was established. They set the foundations for many of the core concepts and
attributes that are still used today, and their work was important in it. The paradigm
was further refined by Goetschel and Voxman (2016), who also addressed the
concept of fuzzy limits and fuzzy integrals. Their work provided insights into how
classical calculus may be extended into the fuzzy domain.

As a result of these concepts, a number of academics started looking into
fuzzy differential equations (for example, Kaleva, 2017; Buckley and Feuring, 2000).
In these equations, functions with fuzzy values play a significant role in modelling
dynamic systems that have unknown parameters. The establishment of existence
and uniqueness theorems, the development of fuzzy analogues of classical solution
techniques, and the investigation of practical applications in engineering and
economics were the primary focusses of these contributions.

The field of complex-valued fuzzy functions, on the other hand, is one that has
witnessed comparatively little development. The vast majority of the work that has
been done up until now has not regarded complex numbers as constituents of the
domain, but rather as parameters in fuzzy-valued functions. When it comes to
describing operations and relations in the complex fuzzy domain, the idea of fuzzy
complex numbers, which was initially presented by scholars such as Dubois and Prade,
serves as a basic step. Following this, subsequent studies made an effort to formalise
fuzzy numbers in the complex plane, with a particular emphasis on fuzzy modulus,
argument, and polar representations.
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Recent studies by Seikkala (2004) and Stefanini (2009), It was possible to
extend fuzzy calculus by introducing generalised Hukuhara differentiability, which
made it possible for fuzzy-valued functions to have a wider range of applications.
Despite the fact that their frameworks were primarily aimed at actual domains,
they made it possible to expand fuzzy calculus into more sophisticated contexts.
Initial efforts have been done in this area by academics such as Allahviranloo and
colleagues (2013), who have investigated fuzzy complex functions, namely those
functions that include analytic characteristics and fuzzy complex mappings.

Recent advancements have focused on the visualisation and geometric inter-
pretation of fuzzy mappings in the complex plane. This is often accomplished by the
utilisation of level sets or a-cut representations most of the time. These works shed
insight on the non-trivial topology of fuzzy pictures and highlight the difficulties
associated with defining concepts such as holomorphicity, conformality, and
harmonicity within the setting of fuzzy images.

In order to extend crisp functions to the fuzzy domain, the extension prin-
ciple remains to be an essential instrument that is utilised during this process. The
acceptance of fuzzy arguments has been extended to traditional complex functions
(such as exponential, logarithmic, and trigonometric functions) as a result of this
concept. The analytical rigour of these transformations continues to be an active
study topic.

In spite of the advances described above, there is still a large gap in the
formalisation of the theory of functions from complex numbers to fuzzy sets,
notably with regard to convergence, differentiability, and integration. In addition,
there is a dearth of published material that discusses the algebraic and topological
structure of such mappings, as well as their applicability in complex-valued systems
that are subject to uncertainty.

In conclusion, although the intersection of fuzzy set theory and complex
analysis has the potential to provide exciting results, the majority of the work that has
been done thus far has either concentrated on fuzzy-valued real functions or dealt
with fuzzy numbers within their own context. A thorough mathematical analysis of
functions that transfer complex numbers to fuzzy sets is still a developing area that
has a lot of room for theoretical growth and practical application. The purpose of this
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study is to contribute to the narrowing of that gap by developing a systematic
framework for analysing such functions. This framework will serve as a foundation
for future research in fuzzy complex interpretation.

2. Introducing Complex Fuzzy Sets:

In the theory of complex fuzzy sets (CFS), there is the potential for a fresh
viewpoint to be offered regarding the study and application of fuzzy systems. CFSs
are distinguished from fuzzy complex numbers, which are defined in, by virtue of
the fact that they are members of the complex-valued category. It is necessary to
take into consideration the amplitude function and the phase function in order to
establish a CFS. These two functions, when combined, constitute the membership
function. In contrast to the real-valued unit interval space, which is one-dimen-
sional, the complex-valued unit disc space, which is two-dimensional, is where the
membership of a CFS is placed. When compared to the membership descriptions
of typical fuzzy sets, CFS membership descriptions are able to be far more flexible.
Please take into consideration the following: Presented before us is a complicated
fuzzy set S, which has the membership function defined as follows:

b, () = rg(h) eH/os®!
= Re(u, () +J Im(u, ()
=rg(h) cos(wg(h)) +j rg(h) sin(wg(h)) 2.1)

as j equals the square root of -1. The complicated fuzzy set relies on the variable 4.
The amplitude function of the complex membership is denoted as rg(/), while the
phase function is wg(/). It is easy to observe the characteristic of sinusoidal waves
in the creation of complex fuzzy functions. A conventional fuzzy set is considered
a specific type of complex fuzzy set where wg(/) is equal to zero. An intricate
fuzzy set of the novel Gaussian type is constructed in this work, as seen in Figure 1.
There is another example in the piece as well.
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(a)

-

(b)

Figure 1: Sample of complicated fuzzy sets of the Gaussian type.

Analysis of the base variable in relation to the amplitude and imaginary-part
memberships.

The following is the design of the complex fuzzy set ¢, which is an acronym
for the Gaussian type (h, m, o, L):

Gaussian (h, m, o, L) =rg (h, m, ©) G950, 1)) (2.2a)
r¢(h, m, ) = Gaussian(h, m, ) = exp[-0.5((h - m)/c)*]  (2.2b)
wg(h, m, 5, 1) =[-0.5((h - m)/c)*] * ((h - m)/c*) * A (2.2¢)

The base variable 4 is used in equations (2.2a) to (2.2c) together with
{m, o, L}. The parameters that make up the complex fuzzy set are the spread, mean,
and phase frequency factor.
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3. Operations of Complex Fuzzy Sets:

According to traditional fuzzy sets, a function p determines the union of
two fuzzy sets, A and B, on the set U, denotedas A AB u:[0,1] x[0,1] —>[0,1]

A membership function p, »(x) might be described in terms of the
following:

(i) Standard Union

g5 () = max[, (), pp()] (3.1)

(i1) Algebraic Sum

o () = 1y () + pp(x) - py(x) pp(x) (3.2)
(ii1) Bounded Sum
iy ~p() =min[1, p,(x), wp(x)] (&3]

In order to be equal to the 7-conorms that have been proposed, the fuzzy
union must be able to meet the notion of a complex fuzzy set.

Complex Fuzzy Union:

Interconnected axioms characterise the intricate fuzzy union. Intuitively
acceptable values can only be obtained by satisfying the characteristics of complex
fuzzy union functions, which are represented by these axioms.

(a) In this case, the closure property is not satisfied by the complex fuzzy union.

In the algebraic sum, the union function does not satisfy the closure
requirement for complex fuzzy sets. This is something that can be demonstrated by
the example that is provided below.

Example 1: Consider

If py (o) = p(x) = .
Then:
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By () + g () - py () pp(x) + 27+ 1
= (2%2+12) =5 lies outside the unit circle.
(b) Fuzzy set unions with complicated parameters must be monotone.

The axiomatic monotonicity criterion of classical fuzzy union is usually
irrelevant to complex valued membership functions due to the non-linear ordering
of complex numbers. Similar to how traditional fuzzy union functions cannot be
used with complex-valued membership grades, the max. and min. operators cannot
be used with these grades either. We may apply the standard fuzzy definition of
union here while using the same strategy for the complex component. Here we see
one how an alternate method of describing phases may look.

Definition: Let 4 and B be two complex fuzzy sets on U, with membership functions
1 ,(x) and py(x), respectively, for the sake of argument. It is possible to define the
complicated fuzzy union 4 U B as

Bz (0) = [1[(x) ® rg(x)] eV tauy ) (3.4)

Where @ represents the 7'-conorm and 4,5 is defined as follows:

(a) (Sum)

Oy = Oy T Op (3.5)
(b) (Max)

O, 5 = max(m,, g) (3.6)
(¢) (Min)

0,z = min(o,, og) 3:7)

(d) (Winner takes all)

. _{mA,1frA>rB 5.9
AUB g > .
®p, 1frB_rA
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Complex Fuzzy Intersection:

The following definition makes it abundantly evident that the derivation of
fuzzy complex intersection is strongly connected to complex fuzzy union. This is
something that should be taken into consideration.

Definition: Two complicated fuzzy sets, 4 and B, defined on U, intersect at the
given point according to the following definition:

Mgy () = [r7(x) ® rg(x)] NV nm ) (3.9)

In this context, the symbol * represents any 7-norm function, which refers
to functions that fulfil all the axiomatic conditions of classical fuzzy intersection.
Such functions include, for instance, the algebraic product and the minimum.
It is the specific form that  , - 3(x) is dependent upon the application under consi-
deration.

Possible methods of calculating o 4 5(x) are given in (3.5)-(3.8). Note that
in theory @, 3(x) and o, 5(x) may concurrently be specified by the same
function (for example, the minimum value). In actuality, however, it is highly
improbable that this approach will prove to be an effective way for computing
these terms.

Complex Fuzzy Complement:

The complement of a typical fuzzy set is defined by Klir and Yuan using
an axiomatic approach. This definition can be found in their work. The criteria of
the axiomatic framework can be satisfied by a number of alternative complement
functions.

Some examples are as follows:
(1) The standard complement:

(17 () = 1- W7 (9: 17 () €[0, 1] (3.10)

The vast majority of fuzzy applications have made use of this particular
version of complement, which meets all four of the axiomatic conditions.
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(2) Step-threshold complement:
e(u7 () = {1, for p; (x) <7, 0, for ji,(x) > 7, p;(x) €[0,1]  (3.11)

One and only the axiomatic skeleton is satisfied by this particular kind of
complement (Axioms 1 and 2).

(3) Enhancements to the Sugeno class:
&5 () = (1- 5 )/ (1 + A (), 17(x) €[0, 11,1 (-1, 0) (3.12)
Complex fuzzy complement:

When attempting to determine the complement of a complicated fuzzy set,
it would appear to be the most obvious course of action to utilise the same axiomatic
concept and the complement functions that are derived from it. Unfortunately, this
strategy is fraught with a number of challenges. There is a possibility that more
favourable outcomes will be accomplished if each component, both actual and
fictional, is taken into consideration separately.

Definition: Let p1¢(x) denote the complex membership grade contained inside §
and suppose that S is a complex fuzzy set on U, the universe of discourse. Notation
c(s) will be used to represent the complex fuzzy complement of S of type ¢, which
is specified by the function.

c:{aeCa<l}>{beCb<l}
Which assigns a value ¢(ug(x)) to all x in U.

The complex fuzzy complement function must satisfy certain axiomatic
criteria, the most basic of which are as follows:

e Axiom 1 (amplitude boundary conditions):
la|=0=|c(a)| and |a|=1=|c(a)|=0
e Axiom 2 (amplitude monotonicity):

a,b eC,with |a|,|b| €[0,1],ifa< b, then |c(a)|=|c(b)|
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Keeping x's membership phase in the complement set, denoted by (x), g,
was chosen as the appropriate approach for the sake of computation, which would
be technically correct. This view of the outcome, however, is incorrect as it takes
for granted that the membership phase is significantly affected by the set-theoretic
operation of complement. No, that's not right. Note that complementation is strictly
confined to the amplitude term of complex membership grades and has nothing to
do with the membership phase. It is important to highlight this.

Features of £-Complex Fuzzy Subgroups from an Algebraic Perspective:

Here we provide a new concept of £-CFSG defined on £-CFS and prove
some basic algebraic properties of this phenomenon.

Definition: A £-CFS thatis homogeneous A &-complex fuzzy subgroup (£-CFSG)
is a subgroup A€ of a group G that admits the following requirements:

L. (mn) 2min[p,(m), w(n)]
2. w(my>p,(m), vm,neG
All £&-CFSGs defined on group G are represented by their family F€(G).
Proposition 1: Each £&-CFSG (G) 4° satisfies the following properties:
3. p(m<pyle), vmeG
4. py(mnty=p,(mmt)y=p,(my=p,(n), vm,neG
Proof:
(1) Letm G, then
Wiangeyy (€)= Wigngeyy (mm”{-1})
2 Min{pyjngeyy (M), Woyngeyy (M™{-1})}
= Hiangeyy ().
(2) Letm, n G, then
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Wiangeyy (1) = Wigngeyy (mn™{-13})
2 Min{py yn ey, (mn™{-1}), 10 yn ey, (1)}
=min{py e, (€), Wiyngey, (1)}
= Mgy ()-

We examine the circumstances in which a certain CFS is £&-CFSG in the
subsequent outcome.

Proposition 2: Let 4 be a CFS(G), such that p, (m-1) p,(m), vm €G.
Moreover, Let £ < o, where oo = inf {7, (m) : m e G}. Then, A" {E} is E-CFSG(G).

Proof: We may deduce that p7;(m) = £ by applying the provided requirements to any
m €G. Using Definition on the inequality given above, we get that u z(m) =&,
therefore, p,(mn) = min{p;(mn), &} and Hangeyy(mn) 2 min{p'{AA{a} \(m),
Wi 4rizy, (M)}, for all m, n € G. Moreover, by using the given condition 7, (m*{-1})=
py(m), we get [ ya ey, (m™{-1 )= Hoangey (m).

0.8

sketch

sof the

Roughnes

0

Artists

Figure 2: Table 1 is interpreted graphically in this example.
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Table 1: The performers' performances following the
conclusion of the second phase

[ Artists Performance of the Artists (@7) ]
a 0.5m
b 0.6m
c 1.5%
d 0.6m
e 0.7m
h 0.4 )

As demonstrated by the subsequent finding, each and every CFSG is invari-
ably £-CFSG.

Proposition 3: Every CFSG 4 is £&-CFSG of a group G.

Proof: Using Definition, we can determine that for any m and » that belongs to G,
we have Hiange) (mn)=min {p(m), e application of Definition in the above relation

gives us p,&(mn) = min p(n)}.
Moreover
M gy, (1)) = min i (mA 1)), £}
> min {yr; (m). £}
Hence, 4 is a E-CFSG(G).

Remark 1: In most cases, the opposite of what is stated in Proposition 3 is never
true. It is possible to see an example of an algebraic a reality concerning the
example that follows.

Example 2: e CFS A defined ona G{1, -1, i, - i} is given as
A(m)=[[0.2e"{in}, 0.4e{in},0.3e~{0.91t}], [-1, -1, i]]

e&-CFSG(G) corresponding to the value &
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0.1 ei 0.57 is given by
ANE}(m)=[[0.1e7{i0.5w}, 0.1e7{i0.5n},0.1e"{i0.57}], [1, -1, ]]

To add insult to injury, definition does not apply to 4, which means that it
does not qualify as CFSG(G). It is demonstrated in the following conclusion that
the intersection of any two £-CFSG is also a &-CFSG.

Proposition 4: For any two AMNE}, BMNE} e IMNENG), (AN BYMEY =AMNE}

Proof: By using Proposition 1, for any two elements m, n € G,

Wianpyrieyy 1) = Wigngey A pn ey (1)
= M {04 ey (M), Wi ey (M)}

In the context of the preceding relation, the application of Definition results
in that

Wyanpyr ey (M) = min{p - pyagey (1), 1051 npyngey (1))

Moreover,

f the artists

Performance o
|

Artists
Figure 3: An illustration of the interpretation
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Wianyen 1D = Wy ey (1)
> min{u‘{AA{a}}(m), HEBA{Q}}(W)}

= WnByr e (M)-

This is concludes the proof.

Conclusion:

At the intersection of complex analysis and fuzzy set theory, this study has
investigated the new and intellectually stimulating field of functions mapping com-
plex numbers to fuzzy sets. We have established the groundwork for comprehending
such mappings by building a strict mathematical framework, which starts with the
exact definitions of fuzzy sets, fuzzy integers, and fuzzy-valued functions over the
complex domain. Using level set (a-cut) analysis and the extension principle
extensively, we investigated important analytical properties-including continuity,
differentiability, and integrability-in this hybrid setting. Using these methods, we
were able to successfully transfer classical ideas from complex function theory
to the fuzzy domain, but we also saw how fuzzy sets differ significantly and the
difficulties that come with them. In order to account for the characteristics of
imprecision and partial membership, our examination of fuzzy limits, convergence,
and complex differentiability uncovered that although some similarities to classical
complex analysis do exist, they need meticulous reformulation. Furthermore, the
work shed light on the complex plane's complicated geometric and topological
behaviour of fuzzy mappings. Areas that require the modelling of uncertainty in
complex-valued systems, like quantum computing, electrical engineering, control
systems, and uncertain signal processing, can benefit from fuzzy images and their
associated level sets due to their visual and structural complexity. This paper proves,
among other things, that fuzzy-valued complex functions are useful instruments
with theoretical and practical depth, rather than just abstract generalisations. We
provide the groundwork for future research on more complicated behaviours, such
as analyticity, harmonicity, and fuzzy boundary value issues, by expanding basic
mathematical frameworks. We still have a long way to go, despite the advances.
Theorems such as Cauchy's integral theorem and residue theorem can be extended
to the fuzzy domain, and there is still room for research into developing numerical
methods for computing fuzzy-valued complex functions, as well as investigating
functional analysis of fuzzy Hilbert spaces with complex arguments.
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