ISSN 0047-6269

The Mathematics Education ISSN

Volume - LV, No. 3, September 2021

Refereed and Peer-Reviewed Quarterly Journal

Journal website: www.internationaljournalsiwan.com

On Balanced Extension of a Set

by Rani Kumari, Research Scholar,
Department of Mathematics,
Jai Prakash University, Chapra - 841301, India

Abstract:

We use the idea of Convex set and convex half of a set in a linear space.

1. Introduction:

We establish a theorem concerning balanced extension of a set A as well as balanced extension of rationally convex hull of a set. Rationally convex set has been defined in our previous paper reference 3.

We also establish a theorem on product of two rationally convex sets.

2. Definition:

In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space is a set S such that for all scalars α with $|\alpha| \le 1$, $\alpha S \subseteq S$.

Where $\alpha S = \{ax/x \in S\}$

The balanced hull or balanced envelope for a set *S* is the smallest balanced set containing *S*.

Theorem (I.I): Let A be a subset of a linear space L, then $B\{Cr(A)\} \subseteq Cr\{B(A)\}$.

Proof: First we show that $B(A) = \bigcup_{\alpha} \{ \alpha A : |\alpha| \le 1 \}$

Let
$$D = \bigcup_{\alpha} \{ \alpha A : |\alpha| \le 1 \}$$

Taking $\alpha = 1, A \subseteq D$

Let $x \in D$ than $x = \alpha a$ for $a \in A$ and some α such that $|\alpha| \le 1$.

Let β be a scalar such that $|\beta| \le 1$.

Then $\beta x = \beta \alpha a$,

where $|\beta\alpha| = |\beta| |\alpha| \le 1$.

Therefore, $\beta x \in \beta \alpha A \subseteq D$.

Hence D is balanced.

Let S be a set such that $A \subseteq S$ and S is balanced.

Let $x \in D$ then $x = \alpha a$,

where $a \in A$, $|\alpha| \le 1$. But $A \subseteq S \Rightarrow a \in S$. Since S is balanced. $\alpha a \in S$. Thus $x \in S$.

Hence $x \in D \Rightarrow x \in S$. Therefore $D \subseteq S$.

Hence D is the smallest balanced set containing A. So we conclude that

$$B(D) = D = \bigcup_{\alpha} \{ \alpha A : |\alpha| \le 1 \}$$

Let z be an element of B(Cr(A)).

From above result

$$B(\operatorname{Cr}(A)) = \bigcup_{\alpha} \{ \alpha \operatorname{Cr}(A) : |\alpha| \le 1 \}$$

So we see that $z \in \alpha \operatorname{Cr}(A)$. For some α such that $|\alpha| \le 1$.

Hence, we can write $z = \alpha l_1 a_1 + \alpha l_2 a_2 + \dots + \alpha l_n a_n$.

Where $a_i \in A$, l_i are rational

$$l_i \ge 0$$
 and $\sum l_i = 1$

Hence $z \in t_1(\alpha a_1) + t_2(\alpha a_2) + \dots + t_n(\alpha a_n)$

Now $a_i \in A \Rightarrow \alpha \ a_i \in B(A)$.

Therefore $z \in Cr(B(A))$.

Thus $z \in B(Cr(A)) \Rightarrow z \in Cr(B(A))$.

Hence $B(\operatorname{Cr}(A) \subseteq \operatorname{Cr} B(A))$.

3. Product of two sets:

Let L be a linear space. Then $L \times L$ is a linear space in which addition and scalar multiplication are defined as follows.

$$(a, b+c, d) = (a+c, b+d)$$
 (1.1)

$$\alpha(a,b) - (\alpha a, \alpha b) \tag{1.2}$$

Where $a, b, c, d \in L$ and α is a Scalar.

Theorem (I.II): Let L be a linear space and A, B be r-convex sets of L. Let $L \times L$ be a linear space with the operations as defined by (1.1) and (1.2), above, then $A \times B$ is a r-convex set of $L \times L$.

Proof: Let (a, b) and (a^1, b^1) be elements of $A \times B$. Then $a, a^1 \in A$ and $b, b^1 \in B$.

Let α , β be rationals such that $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta = 1$.

Then
$$\alpha(a, b) + \beta(a^1, b^1) = (\alpha a, \alpha b) + (\beta a^1, \beta b^1) = (\alpha a + \beta a^1, \alpha b + \beta b^1).$$

Since $a, a^1 \in A$ and A is r-convex, so $\alpha a + \beta a^1 \in A$.

Similarly $\alpha b + \beta b^1 \in B$.

Therefore $\alpha(a, b) + \beta(a^1, b^1) \in A \times B$.

Hence $A \times B$ is a r-convex set of $L \times L$.

The Mathematics Education [Vol. LV (3), September 21]

References:

- 1. Kelley, J.L; Namioka, I. and Other (1968): Linear Topological Spaces, (Van Nostrand) East West Student Edition, India, P. 14.
- 2. Rudin, W. (1973): Functional Analysis, McGraw-Hill Book Company, Inc. New York, pp. 6-11 and P. 36.
- 3. Robertson, A.P.W.J. (1964): Topological Vector Spaces, Cambridge Tracts in Mathematics, 53-Cambridge University Press, P. 4.
- 4. W. Rudin (1990): Functional Analysis (2nd ed.), McGraw-Hill, Inc. ISBN 07-054236-8.
- 5. H.H. Schaefer (1970): Topological Vector Spaces, GTM 3, Springer Verlag, P. 11. ISBN. 0-387-05380-8.