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Abstract :

In this paper, we have discussed a static cylindrically symmetric perfect
fluid distribution in Einstein-Cartan theory and have solved the field equations
using suitable equation of state and by choosing a specific form for one of the
metric potentials. We have assume the spins of all the individual particles com-
posing the field to be aligned along the symmetry axis. Pressure and density
have been found and the constants appearing in the solution have been found
by Lichnerowicz boundary conditions.
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1. Introduction:

In this study, we discussed Einstein-Cartan theory which attempts to incor-
porate the spin density of a material medium into the field equations. Spherically
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symmetric interior solution in Einstein-Cartan theory were reported by Kerlic [5],
Kuchowicz [7-10], Parsanna [12], and Skinner and Webb [16]. Singh and Yadav [15]
have also obtained static fluid spheres in Einstein-Cartan theory. Some other workers
in this line are Suh [17], Banerjee [4], Arkuszewski Wiski [1], Karori et al. [18],
Levi-Civita [11]. However, since in spherical symmetry it is assumed that spins are
all aligned in radial direction (implying the pressure of a magnetic monopole at the
center) the picture is not very physical.

Further, as a rotating system can’t be spherical, naturally it seems desirable
to study axi-symmetry distributions which are more physical. Keeping this fact in
mind Parsanna [13] has considered the simplest axi-symmetric system namely a
static cylinder of perfect fluid composed of particles having their spins aligned
along the symmetric axis.

In the present paper, we have also discussed a static cylindrically symmetric
perfect fluid distribution in Einstein-Cartan theory and have solved the field equa-
tions using a suitable equation of state and by choosing a specific form for one of
the metric potentials. We have assumed the spins of all the individual particles
composing the fluid to be aligned along the symmetry axis. Pressure and density
have been found and the constants appearing in the solution have been found by
Lichnerowicz boundary conditions.

2. The Field Equations:
We considered the static cylindrically symmetric metric given by

ds? = - V(dr?+dz?) — rre >V dy? + e*Vdi? Al

where p and v are functions of 7 alone.

We have the orthonormal tetrad

0l =e'Vdr, 8> =re'dp, 03 = e"Vdz, 0% = edt 2.2)
The metric (2.1) now becomes

ds® = {(8')* +(6°)* (6°)* (6%)%} (2.3)
So that, gl.J.Zdiag(-l,-l,-l, 1)
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The Einstein-Cartan field equations are

i_pi 1 poi_ g4
Gj= R~ RS =~k 24

04— 5101, 8,0}, =-KS}, (2.5)

Where R;; is Ricci tensor, R is the scalar curvature and tj’ is the canonical

. i i .
asymmetric energy momentum tensor and S, and (J; are spin and torson tensor.

The classical description of spin is defined by the relation
Sj = u' Sj with Sy k=0 (2.6)

Where ' is the velocity four vectors and S;;is the intric angular momentum
tensor.

We suppose that spin of the individual particles composing the fluid are
all aligned along symmetry (Z-axis). Therefore the only none-zero components
of the spin tensor S;are

815 =-8,; =K (Say) (2.7)

O, =-0y, =-kK (2.8)

The canonical asymmetric energy momentum tensor is given by

| i 1 im ke
=T+ gmAS, (2.9)

Jm

Y_}i being the symmetric energy momentum tensor.

Considering the perfect fluid material distribution with anistropic pressure,
the symmetric tensor Y_}i is given by

T}i: diag(_pw _pq), _pz> p) (210)
The non-zero components of the canonical tensor tj’ are

n=Ti=-p, (2.11)
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tg:Tzzz'Pq)
Z‘;:T;:-pz
t3=T4=p

1
l‘g == Ke"Hy'

1
ti = EKeV'”V'
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Using equations (2.4) and (2.11) the field equations may be written as

(Prasanna [13])
VP 2y"— ' + 2’,—\}'— v'?) +% KK?=-kp
2v-y (2 _ V) _ 1 2
e ”)(v —’7) _Zsz =-kp,
2(v-)_r_o2y L 2_
e (-u'—=v) 4 KK kp¢
2v-p (2 B _ 1 >
et ”)(v +’7) _Zsz =kp,
AVWK+Kp'—Kv') = ke MV’
AVWK+Kp'+Kv') =ke' ™ v/
Adding (2.16) and (2.17), we get
K+Ku=0
Which on integration gives
K=He"
where H is an arbitrary constant be determined.

The conservation equation for j=1 gives the continuity equation

(2.12)
(2.13)
(2.14)

(2.15)
(2.16)

(2.17)

(2.18)

(2.19)

d
e (0+P) = (PP )V ) = (V-R),p)= - T KK(K +hv')

(2.20)
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Putting k= (-8nG)/c? with G= 1, ¢ = 1, we can write the field equations as

8rp = 16m2K2 + 2002y — 7 + 2V v?) (2.21)
8mp, = -8np, = 16m2K> + 2 (% - V'z) (2.22)
81y = 16m°K> + W +v'2) 223

3. Solution of the Field Equation:
Following Hehl’s approach [2, 3] by redefining pressure and density as
p=p-2nK? p=p-2nK> (3.1)

The field equations reduce to

87'C[_D. - eZ(V-u)(zvn _ un x %’_’_ Vr2) (32)
w0 o
8y = M (" +v'?) (34)

Also the continuity equation becomes,

- - I

d_ = e j—
d_}:r (P +PIV = (P =PV = 7) = 2p,(V ) =0 (3.5)

s
Case 1:
We now assume an equation of state of the form
P =a py, where a is a constant.
This gives us an additional equation

2v'
n
+T

2v — (1+a)v? = (1+r)p” (3.6)

Since our set of equations are still incomplete, we will assume a particular
form for one of metric potentials. For this we assume
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B3
v=——1+5 (3.7)
We can solve u from (3.6) which we find to be
B B cric (3.8)
= — AT .
S oay 30 T e

We have now four arbitrary constants B, B,, ('}, (; which are to be deter-
mined through the boundary conditions. Assuming that the cylinder has a radius
r=ry, we have r > r,, the field equations R;; = 0.

A well-known solution of Einstein equations for empty space with cylindri-
cal symmetry is the given by Levi-Civita [11] which is expressed as

ds? = -A*r*-)(dr?+dz?) —r?1-dg? + r2dr? (3.9)
Where C and 4 being constants.

Since the equations (3.2) - (3.5) are similar to Einstein equations in form,
we can use the Lichnerowicz boundary conditions namely that the metric potentials
are ('} across the surface »= ;. Thus the continuity of p, 1" and v, v’ gives us

C

By = Bz=Clogrb—g (3.10)
b

_6C  [CUta) 1]
Cr(+a) |5 2

Co=log A+ C?logr, +———
2 g gy (e

Here we have for the interior of the cylinder, the solution,

_2C R o eyl _C R
p=—— {2(13 1)— (R 1)} 5{6 6R}

i B
30

+log A+ C?logr, — (3.11)
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:g(R3—1)+Clogrb;R:% (3.12)

With the pressure and density given by

_ fEn 2, 2 2(v-p) R2_ 6C2
8np,=16n“Be ™+ eV ————(R-1)+
2(1+a)rbr Sryr

(1- RS)}

_ 250 3 2(v-p) R2_ 6(C?
8np,=16n°B et -V ——(R-1) +
2(1+a)rbr Sk

(1- RS)}

8np, = l6n’B>e ™ + 2V M {LR
(1+ayr;

8np = 16m2B2e 2 + 20V { 4C—0R}

(1+ayr}
Case 2:
Here we choose
p =ap,, where a is a constant.

This gives an additional equation
vi+ 2V (a2 = ”+u (3.13)

Since our set of equations are still incomplete, we will take a judicious of
one of the metric potentials. For this we choose

Where B and B, are constants.

With this value of v equation (3.13) yields

dzp adp 5
— - —= 4 3.15
e +r = 8B r—(1-a)4Bir (3.15)
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d
Putting d—; =p, we get

dp a
e _l’_ i,
dr r
Equation (3.16) is a linear equation in p and r. Its solution is given by
B Afi-
o 88172 A a)B%rs
dr 2a ats

p=28Br—4(1-a)Bir

Where (' is constant of integration.

Integration of (3.17) yields

_Clrl-a+8B%r3 2(1-a) _,
l-a  3Q+a) 3(a+5) !

9 ro+ C,

Where (', is another constant of integration.
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(3.16)

(3.17)

(3.18)

As in case 1, using boundary conditions we can find the constants By, B,, ('},

(', and also pressure and density can be written similarly.
References:

1. Arkuszewski W. (1975) : Comm. Phys., 45, 183.

2. Hehl, EW.(1974b) : Gen. Rel. Grav., §,491.

3. Hehl, F.W. (1974a) : Gen. Rel. Grav., 4, 333.

4. Banerijee, S. (1978) : GRG 9, 783.

5. Kerlic, GD. (1973) : Astrophysics J., 185, 631.

6. Kerlic, GD. (1974) : Spin and torson in general relativity and implication for

Astrophysics and cosmology, Ph.D. Thesis Princeton University.

7. Kuchowicz, B. (1975a) : Acta Phys. Polon., 36, 555.

8. Kuchowicz, B. (1975b) : Acta Phys. Polon., 36, 173.



34 The Mathematics Education [Vol. LVIII (1), March 24]

9. Kuchowicz, B. (1975c¢) : Astrophys, Space Sci., D13, 33.

10. Kuchowicz, B. (1975d) : Acta Cosmologica, 4, 67.

11. Levi-Civita, T. (1919) : R.C. Accad. Lincei, 28, 101.

12. Parsanna, A.R. (1973) : Phys. Lett., 446, 165.

13. Parsanna, A.R. (1973) : Phys. Rev., D11, 2076.

14. Parsanna, A.R. (1973) : Phys. Rev., D11, 2083.

15. Singh, T. and Yadav R.B.S. (1978) : Acta Phys. Polon., B8, 837.
16. Skinner, R. and Webb, 1. (1977) : Acta Phys. Polon., BS, 81.

17. Suh, Y.B. (1978) : Prog. Theo. Phys., 59, 1853-59.

18. Karori, K.D; Sheikh, A.R. and Mahanta L. (1981) : Con J. Phys., 59, 425.
19. Trautman, A. (1973) : Inst. Naz. Acta. Mat. Symp. Mat., 12, 139.



