ISSN 0047-6269

The Mathematics Education Volume - LV, No. 2, June 2021

Refereed and Peer-Reviewed Quarterly Journal

Journal website: www.internationaljournalsiwan.com

# **Application of some notations** in Topological Spaces

by Rajiv Kumar Mishra, Associate Professor,
Department of Mathematics,
Rajendra College, Chapra - 841301
(Jai Prakash University, Chapra)
E-mail: dr.rkm65@gmail.com

#### Abstract:

We have introduced some notations in topological spaces and with its help conditions for continuity, semi-continuity, semi-open sets, semi-closed sets, etc. have been deduced.

Keywords: semi-open sets, semi-closed sets, semi-continuity, α-closed set

#### I. Introduction:

In [1], a semi-open set in a topological space has been defined by Norman Levine. In [2], a semi-closed set has been introduced by Crossley and Hildebrand. In [3],  $\alpha$ -closed set has been defined by Njastad.

## II. Definitions and preliminaries:

In context of topological spaces, we have introduced some new notation. Generally interior of a set A in a topological space X is denoted by int(A) or  $A^0$ . Let us write

$$i(A) = int(A)$$

In this new notation, same standard results are as follows:

$$i(A) \subseteq A$$
,  $i(X) = X$ ,  $i(\phi) = \phi$   
 $i^2(A) = i(i(A)) = i(A)$ . So we can write  $i^2 = i$   
 $i(A \cap B) = i(A) \cap i(B)$   
 $i(A) \cup i(B) \subseteq i(A \cup B)$   
 $A \subseteq B \Rightarrow i(A) \subseteq i(B)$ 

A set A is open  $\Leftrightarrow i(A) = A$ 

Usually we denote complement of a set A by  $A^c$  or A'.

Here we use  $C_0A$  for complement of a set A.

So we have the following results:

$$A \cap C_0 A = \emptyset, A \cup C_0 A = X$$
  
 $C_0^2(A) = C_0(C_0 A) = A$ 

So let  $C_0^2 = I$ , Identity set function.

In standard topology book relation between closure of a set denoted by  $\overline{A}$  and interior of A, denoted by int A is given by

$$\overline{A} = (\operatorname{int} A')'$$

We write C(A) in place of  $\overline{A}$  in our new notation.

So above result becomes

$$C(A) = C_0(i(C_0(A))) = C_0 i C_0(A)$$

Hence we write

$$C = C_0 i C_0$$

Thus A is closed  $\Leftrightarrow C(A) = A$ 

For two sets A and B,

$$C(A \cup B) = C(A) \cup C(B)$$
  
 $C(X) = X$ ,  $C(\Phi) = \Phi$   
 $C(C(A)) = C(A)$ . Hence  $C^2 = C$   
 $A \subseteq B \Rightarrow C(A) \subseteq C(B)$ 

When  $A \subseteq \text{int } \overline{A}$ , A is defined to be pre-open.

So in our notations,

$$A \subseteq iC(A)$$

When  $\overline{\operatorname{int}(A)} \subseteq A$ , A is defined to be pre-closed.

Hence in our new notations,

$$Ci(A) \subseteq A$$

As defined by Norman Levine in [1], A is semi-open if  $A \subseteq Ci(A)$ .

As defined by Crossley and Hildebrand in [2], A is semi-closed if  $iC(A) \subseteq A$ .

#### III. Main Results:

In terms of interior, we express conditions of continuity.

Let  $g: X \to Y$ , where X and Y are topological spaces and g is a continuous mapping of X into Y.

Let A be a set in Y. Then iA is open in Y. Since g is continuous,  $g^{-1}(iA)$  is open in X.

Hence

$$ig^{-1}(iA) = g^{-1}(iA) \Rightarrow (ig^{-1}i)(A) = (g^{-1}i)(A)$$

But A is any set in Y, hence

$$ig^{-1}i = g^{-1}i$$

Consider the converse. So let g be a mapping such that

$$ig^{-1}i = g^{-1}i$$

So we show that g is continuous.

Let A be open in Y.

Hence iA = A

So 
$$g^{-1}(A) = g^{-1}(iA) = (g^{-1}i)A = (ig^{-1}i)(A) = ig^{-1}(iA) = ig^{-1}(A)$$

This shows that  $g^{-1}(A)$  is open in X.

Hence g is continuous.

So, g is continuous  $\Leftrightarrow ig^{-1}i = g^{-1}i$ 

Next consider the case when g is an open mapping.

Let  $A \subseteq X$ , then iA is open in X.

Hence g(iA) is open in Y. This means

$$ig(iA) = g(iA)$$

We can write

$$(igi)(A) = g(iA) = (gi)(A)$$

But A is any set, hence

$$igi = gi$$

Conversely, let igi = gi

Let A be open in X i.e. iA = A

Hence

$$igi(A) = gi(A) \Rightarrow ig(A) = g(A)$$

So g(A) is open in Y.

Hence g is an open mapping.

Therefore

g is an open mapping  $\Leftrightarrow igi = gi$ 

Corollary 1: If f is one-one, onto and fi = if then f is a homeomorphism.

**Proof:** Since f is one-one and onto, it is invertible. So  $f^{-1}$  exists such that  $ff^{-1}$  or  $f^{-1}f$  are identically mappings.

Also

$$fi = if \Rightarrow i(fi) = i(if) = i^2f = if = fi$$

Thus

Thus

$$ifi = fi$$

Hence f is an open mapping.

Moreover,

$$fi = if \Rightarrow f^{-1}(fi) = f^{-1}(if)$$

$$\Rightarrow (f^{-1}f)(i) = f^{-1}(if) \Rightarrow ii = f^{-1}if$$

$$\Rightarrow i = f^{-1}if$$

$$\Rightarrow i(f^{-1}i) = (f^{-1}if)(f^{-1}i) = f^{-1}i(ff^{-1})i = f^{-1}iii = f^{-1}i$$

$$if^{-1}i = f^{-1}i$$

Hence f is continuous. Since f is open also, it is a homeomorphism.

Corollary 2: If f is a homeomorphism, then

$$fi = if \Leftrightarrow fC = Cf$$

(i.e. i and C can be interchanged)

**Proof:** We know that in case f is a homeomorphism, f is one-to-one, onto and  $fC_0 = C_0 f$  as mentioned in [4].

Hence

$$fi = if$$

$$\Leftrightarrow C_0(fi)C_0 = C_0(if)C_0$$

$$\Leftrightarrow (C_0f)iC_0 = C_0i(fC_0)$$

$$\Leftrightarrow (fC_0)iC_0 = C_0i(C_0f) \text{ ; using } fC_0 = C_0f$$

$$\Leftrightarrow f(C_0iC_0) = (C_0iC_0)f$$

$$\Leftrightarrow fC = Cf$$

Now we show some well known results in topology in terms of our new notations.

## 1. Complement of open set is closed.

**Proof**: Let A be an open set, then iA = A

We need to prove that  $C_0A$  is closed i.e.

$$CC_0A = C_0A$$

Now 
$$CC_0A = CC_0iA = (C_0iC_0)C_0iA = C_0i(C_0C_0)iA = C_0iiA = C_0iA = C_0A$$

Hence the proof.

## 2. Complement of closed set is open.

**Proof:** Let A be closed. Then CA = A

We need to show that  $C_0A$  is open i.e.

$$iC_0A = C_0A$$

Now 
$$iC_0A = (C_0C_0)iC_0A = C_0(C_0iC_0)A = C_0CA = C_0A$$

Hence the proof.

## 3. If X, Y, Z are topological spaces $f: X \to Y$ and $g: Y \to Z$ are continuous mappings, then $gf: X \to Z$ is continuous.

**Proof:** Since f and g are continuous

$$if^{-1}i = f^{-1}i$$
 and  $ig^{-1}i = g^{-1}i$ 

Now,

$$(if^{-1}i)(ig^{-1}i) = if^{-1}(ii)g^{-1}i = if^{-1}(ig^{-1}i)$$
$$= if^{-1}(g^{-1}i) = i(f^{-1}g^{-1})i = i(gf)^{-1}i$$
(1)

Also

$$(if^{-1}i)(ig^{-1}i) = (f^{-1}i)(g^{-1}i) = f^{-1}(ig^{-1}i)$$
$$= f^{-1}(g^{-1}i) = (f^{-1}g^{-1})i = (gf)^{-1}i$$
(2)

From (1) and (2),

$$i(gf)^{-1}i = (gf)^{-1}i$$

This shows that gf is continuous.

## 4. Condition for continuity in terms of closure.

We have seen that f is continuous if and only if

$$if^{-1}i = f^{-1}i$$

$$\Leftrightarrow (if^{-1}i)C_0 = (f^{-1}i)C_0 \Leftrightarrow C_0(if^{-1}iC_0) = C_0(f^{-1}iC_0)$$

$$\Leftrightarrow C_0i(f^{-1}iC_0) = C_0f^{-1}iC_0$$

$$\Leftrightarrow C_0iC_0C_0f^{-1}iC_0 = C_0f^{-1}iC_0$$

$$\Leftrightarrow C_0iC_0(C_0f^{-1})iC_0 = (C_0f^{-1})iC_0$$

$$\Leftrightarrow C_0iC_0(f^{-1}C_0)iC_0 = (f^{-1}C_0)iC_0, \text{ since } C_0f^{-1} = f^{-1}C_0$$

$$\Leftrightarrow (C_0iC_0)f^{-1}(C_0iC_0) = f^{-1}(C_0iC_0)$$

$$\Leftrightarrow Cf^{-1}C = f^{-1}C$$

## 5. Condition for semi-open set:

We show that condition for a set A to be semi-open is

$$\overline{A} = \overline{\operatorname{int}(A)}$$

i.e. in our new relations

$$CA = CiA$$

**Proof:** We know that a subset A in a topological space X is semi-open if

$$A \subseteq CiA$$

Now CiA is a closed set containing A but smallest closed set containing A is CA.

Hence  $CA \subseteq CiA$ 

But  $iA \subseteq A \Rightarrow CiA \subseteq CA$ 

Thus  $CA \subseteq CiA \subseteq CA$ 

Hence CA = CiA

Conversely, let CA = CiA

Thus  $A \subseteq CA \subseteq CiA$ 

Hence A is semi-open.

Thus A is semi-open  $\Leftrightarrow$  CA = CiA

## 6. Condition for semi-continuity:

We show that condition for a function  $f: X \to Y$ ; X, Y being topological spaces to be semi-continuous is

$$Cf^{-1}i = Cif^{-1}i$$

**Proof**: Function f is defined to be semi-continuous by N. Levine in [1], if for G open in Y,  $f^{-1}(G)$  is a semi-open set in X.

Let A be any subset of Y. Then iA is open in Y. Hence  $f^{-1}(iA)$  is a semi-open set in X. We have seen that for this required condition is

$$Cf^{-1}(iA) = Cif^{-1}(iA)$$

$$\Rightarrow (Ci)(A) = (Cif^{-1}i)(A)$$

But A is any set, condition is

$$Cf^{-1}i = Cif^{-1}i$$

Consider the converse i.e. given above condition we need to show that f is semi continuous.

Let A be a set. Then

$$(Cf^{-1}i)(A) = (Cif^{-1}i)(A)$$

$$\Rightarrow C(f^{-1}iA) = Ci(f^{-1}iA)$$
i.e.  $f^{-1}(iA)$  is semi-open.

If A is an open set then iA = A, so  $f^{-1}(iA) = f^{-1}(A)$  is semi-open. Thus inverse image of an open set w.r.t. f is semi-open i.e. f is semi-continuous.

## 7. Condition for semi-closed set:

We show that condition for A to be semi-closed is

$$iA = iCA$$

**Proof:** We know that a set A is semi-closed if

$$iCA \subset A$$

Thus iCA is an open set contained in A, but iA is the largest open set contained in A, hence  $iCA \subseteq iA$ .

But 
$$A \subset CA \Rightarrow iA \subset iCA$$

Hence iA = iCA

Conversely if iA = iCA, then

$$iCA = iA \subset A$$

i.e. A is semi-closed.

Thus set A is semi-closed  $\Leftrightarrow iA = iCA$ 

8. A is semi-closed  $\Leftrightarrow C_0A$  is semi-open.

**Proof:** First we observe that

$$CC_0 = (C_0 i C_0) C_0 = C_0 i$$

and

$$C_0iC = C_0i(C_0iC_0) = (C_0iC_0)iC_0 = CiC_0$$

Now A is semi-closed if

$$iA = iCA$$

and  $C_0A$  is semi-open if

$$C(C_0A) = Ci(C_0A)$$

Hence

A is semi closed  $\Leftrightarrow iA = iCA$ 

$$\Leftrightarrow$$
  $C_0(iA) = C_0(iCA)$ 

$$\Leftrightarrow$$
  $(C_0 i)A = (C_0 iC)A$ 

$$\Leftrightarrow$$
  $CC_0A = (CiC_0)A$ 

$$\Leftrightarrow$$
  $C(C_0A) = Ci(C_0A)$ 

 $\Leftrightarrow$   $C_0A$  is semi-open.

### 9. α-closed set:

As defined by Njastad in [3], a set A is  $\alpha$ -open if  $A \subseteq iCi(A)$ 

A is  $\alpha$ -closed if

$$CiC(A) \subseteq A$$

Now, we show that a nowhere dense set is  $\alpha$ -closed.

**Proof**: Let a set A be nowhere dense i.e.

$$int \bar{A} = \phi$$

i.e. 
$$iCA = \phi$$

Now  $iCA = \phi \subseteq A$ . So A is semi closed.

Also 
$$CiCA = C(\phi) = \phi \subseteq A$$

Hence A is  $\alpha$ -closed.

### **Conclusion:**

In this paper, we have introduced some notations in study of topological spaces which are quite useful. With its help conditions of continuity, semi-continuity, etc. have been put in new elegant forms. Conditions of semi-open, semi-closed sets have been also derived.

### References:

- [1] Norman L. Levine: "Semi-open sets and semi-continuity in topological spaces" American Math. Monthly 70 (1963), pp. 36-41.
- [2] S. Gene Crossley and S.K. Hildebrand: "Semi-Closure" Texas J. Sc. 22 (2-3)(1971), pp. 99-112.
- [3] O. Njastad: "On some classes of nearly open sets" Pacific J. Math. 15 (1965), 961-970.
- [4] G.F. Simmons: "Introduction to Topology and Modern Analysis" (1963) McGraw-Hill Book Company, Inc. New York, Prob.6(e), P. 20.