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Abstract:

Common fixed point theorem for a generalized (@, y)-contractive type
mapping on a complete 2-metric space.
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1. Introduction:

In 1963 Gahler[1] introduced a concept of 2-metric spaces as a generaliza-
tion of metric spaces. The 2-metric space is used to measure the area of triangle in

[1]
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R? as the inspiration example. It has been show by Gihler that in 2-metric d is non-
negative. After Gédhler many authors obtained results in these spaces [2, 3,4, 9, 11,
12]. Application of fixed point theory in 2-metric spaces is in medicine, economics,
game theory, etc.

Definition 1.1[1]: Let X be a non-empty setand d: X. X. X—R. Itforallx, y,z eX
and © in X we have,

L d(x,y,z)=0.Ifatleasttwo of x, y, z are equal.
II. Forallx,ythere exists a point z in X such that d(x, y, z) # 0.

M. d(x,y,z)=d(x,z,y)=dy,x,2z)=d@y,z x)=d(z x,y) = dz,y, x),
forallx,y,z eX.

IV. dx,y,z)=d(x,y,u)+d(x, u,z)+du,y,z), thendis called a 2-metric on X
and the pair (X, d) is called to be 2-metric space.

Example 1.1: Let a mapping d : R* — [0, «) be defined by d(x, y, z) = min {Ix-yI,
Iy-zI, Iz-xI}. Then d is a 2-metric on R.

In 2001, Rhoades[5] established a fixed point theorem for 7': X — X in
concept of metric space.

Theorem 1.1[5]: Let X be complete metric spaces and let 7': X — X be any mapping.
Assume that for every x, y €X,

d(Tx, 1y) < d(x, y) = ¢(d(x, y)),

where, ¢ : [0, 00) — [0, ) is a continuous and non-decreasing function with ¢(0) =0
and ¢(7) > 0 for all 7> 0. Then 7"has a unique fixed point.

In 2008, Dutta and Choudhary [6] obtained the generalization of theorem (1.1).

Theorem 1.2[6]: Let (X, d) be a complete metric space and let 7 : X — X be two
mapping. Assume that for every x, y e X.

Y(d(Tx, 1)) < Y(d(x, y)) - d(d(x, ),

where,



The Mathematics Education [Vol. LVII (4), Dec. 23] 3

(1) WY:[0,0)—[0, ) is a continuous and monotone non-decreasing function with
Y(7)=0ifand only if 7= 0.

(i1) ¢ : [0, 00) = [0, =) is a lower-semi continuous function with ¢(7) =0 if and only
if 7=0. Then 7 has a unique fixed point.

In 2009, Zhang et al.[ 7] obtained the following generalization of theorem (1.1).

Theorem 1.3[7]: Let (X, d) be a complete metric space and let 7, .5 : X — X be two
mappings. Assume that for every x, y e X.

d(Tx, Sy) < M(Ix, Sy) — ¢(M(Tx, Sy)),
d(y, Tx)+d(x,Sy)

where M(1x, Sy) =max{d(x, y), d(x, Tx), d(y, Sy), } and ¢ is defined

as in Theorem (1.1). Then there exists a unique point z € X' such thatz= 7z = §z.

In 2009, Dori¢ [8] obtained common fixed point theorem for two mapping
generalizes above results.

Theorem 1.4[8]: Let (X, d) be a complete metric space and let 7., .5 : X — X be two
mappings. Assume that for every x, y e X

Y(d(Tx, 1)) < Y(M(Tx, 1y)) — ¢(M(Tx, Sy)),

where V¥ and ¢ defined as in theorem (1.2) and M(7x, Sy) = max{d(x, y), d(x, Tx),

d(y, Tx)+d(x,S
d(y, §y), LA

Then there exists a unique point z € X such that
z=T1z=28z.

In 2017, Fei He et al.[11] proved the common fixed point theorem for two
mapping satisfying a generalized (W, ¢)- Suzuki weak contractive type condition in
a complete metric space.

Theorem 1.5[12]: Let (X, d) be a complete metric space and let 7, S : X — X be
two mappings. Assume that for every x, y e X
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% min{d(x, Ix), d(y, Sy)} <d(x, y) implies
W(d(Tx, Sy)) < ¥(M(Ix, 1y)) — o(M(Tx, Sy)),

where W and ¢ defined as in theorem (1.2) and M(7Xx, Sy)=max{d(x, y), d(x, Tx),
d( Tx)+d(x Sy)
d(y, Sy), == =3

Then there exists a unique point z € X' such thatz =7z = Sz.

In 2020, Arya et al.[ 12] obtained the results for the generalized (W, ¢)- Suzuki
weak contraction under a rational expression.

Theorem 1.6[13]: Let (X, d) be a complete metric space and let 7, S : X — X be
two mappings. Assume that for every x, y e X

%min{d(x, Ix), d(y, Sy)} < d(x, y) implies

Y (d(Tx, Sy)) < W(M(Ix, 1)) — ¢(N(Tx, 1)),

1+d(x, Tx)

where N(Tx, 1y) =max {d(x, ), d(y, Sy)( T dCr,

theorem (1.2).

)} and V¥ and ¢ are defined as in

Then there exists a unique pointz € X such that z=7z=Sz.

In 2023, Arya et al.[ 13] obtained the results for the generalized (\V, ¢)- Suzuki
weak contraction under a rational expression.

Theorem 1.7[14]: Let (X, d) be a complete metric space and let 7, .S : X - X be
two mappings. Assume that for every x, y e X

Y (d(Ix, Sy)) < ¥ (Mi(Ix, Sy)) — d(Mi(Tx, Sy)),

where Mj(Tx, Ty) = max {d(x, y), d(x, Tx), d(y, $y),22" Tx)“;‘“x’sy), ARG

2
d(y, Sy) (llic;((x Tx)) d(x, Tx) (11+Z((y S ))} and ¥ and ¢ are defined as in theorem

(1.2). Then there exists a unique fixed point z e X' such thatz=7z=Sz.
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Definition 1.2[1]: A sequence {x,),ey in a 2-metric space (X, d) is said to be a
Cauchy sequence ifm Lignwd(xm, Xn, a) =0 forall a e X.

Definition 1.3[1]: A sequence {x,),ev in a 2-metric space (X, d) is said to be a
convergent at a € X if a lr}gw d(x,, x,a)=0 forall a eX.

Definition 1.4[1]: A 2- metric space (X, d) is said to be complete if every Cauchy
sequence in X is convergent.
2. Main Result:

The purpose of this paper is to study the (¥, ¢)- Suzuki contraction under a
rational expression Arya et al.[13] on the setting of 2-metric space.

Theorem 2.1: Let X be a complete 2-metric space and Let 7, S : X — X be two
mappings. Assume that for every, x, y, a e X.

Y(d(Ix, Sy, a)) <Y (M (Tx, Sy, a)) — d(Mi1(Tx, Sy, a)) (2.1)

Where M;(Tx, 1y, a) = max{d(x, y, a), d(x, Tx, a), d(y, Sy, a), d(y,Tx,a);‘d(x,Sy, Q.

dx,Tx,a)+d(y, Sy, a) , d(y, Sy, a) (l+d(x, Tx,a) ), d(x, T, a)(1+d(y,Sy,a))}

2 1+d(x,y,a) 1+d(x,y,a)

and ¥ and ¢ are defined as in theorem (1.2). Then there exists a unique fixed point
z eXsuchthatz=T7z=§z.

Proof: Suppose x is an arbitrary. Then we can choose x; = Sxg, x, = Ty, x3 = Sx;
and x4 = Tx3. In general, we can construct a sequence {x,,}, <y in X such thatx,, ., =
1x5,+1 and X5,,+1 = Sx2,,.

Now, if n is odd then, by (2.1) we have,
lP(d(Txna an—b a)) < l11(1\41(71-)‘:}% an-la Cl)) - d)(Ml(Txn: an-la (1))
Where Mi(Tx,, Sx,.1, @) = max{d(x,, X,.1, @), d(x,, Tx,, @), d(x,.1, Sx,.1, Q),
|d(&,., IX,,, @) Hd(X,,, SX.q, @2, [d(x,, TX,,a)
+ (xn-la an-b a)] /2’ d(xn-la an-la a) [(1 +d(xna Txn: a))/
(1 +d(xna Xn-1- a))]a d(xna Txna a) [(1 + d(xn-la an-la a))/
(1 + d(xm Xn-1- a))]}
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- max{d(xn, Xn-15 a)a d(xm Xn+15 a) > d(xn-la Xn» a)a
[d(xn-b Xn+1> a) i d(xm Xns a)]/2, [d(xna Xn+15 Cl)
+ d(xn-la Xn» a)] /27 d(xn-la Xn a) [(1 + d(xna Xn+1, a))/
(1 + d(xm Xn-1» a))], d(xna Xn+1» a) [(1 + d(xn-la Xns Cl))/
(1 + d(xna Xn-1» a))]}

= max{d(xm Xn-15 a)) d(xna Xn+1, a)}
So, we obtain

W(d(Txy, Sxp.1, @) < W(max{d(x,, X,.1, a), d(Xp, Xp11, a)})
- d)(max{d(xna Xn-1» a), d(xna Xn+1, a)}) (22)

If d(x,, x,+1, a) > d(x,.1, x,,, a) for some n, then (2.2) gives

W(dxn, Xpe1, @) < W(d(x, X415 @) = O(d(Xp, X1, @) < W (d(X, X1, @),
which is a contradiction. Hence for all n, we get

Y (d(xy, Xp11, @) < W(d(X1, X, @) = O(d(Xp1, X, @)
Consequently, we have

Y (d(xy, Xp11, @) < W(d(Xy1, Xy, ) (2.3)
In an analogous way, we can show that condition (2.3) is true for even values of n.
By the property of ¥, for all n €N, the Positive integers, we have

d(x,, Xp+1, @) < d(x,,.1, Xp, Q) (2.4)

Moreover, the sequence {x,},ev is non-increasing monotonic and bounded
below, and so there exists, » > 0 such that

nli)rg d(x,, X1, Q) =1 = ’lqi_r)rgod(xn_l, ) (2.5)
Using the property of lower semi-continuous of ¢, we have
6(r) < lim inf $d(x,.1, %, ).

Now, we claim that »=0. In fact, taking upper limit as 7—o0 on the following
inequality and using (2.5) we have,
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lP(d(xna Xn+1, a)) = \P(d(xn-la Xns a)) - d)(d(x}’l-l’ Xns a)) 1mphes
o(r) <P (r) — d(r).
i.e., ¢(r) <0 implies ¢(») =0 and ¢(r) = 0 implies » = 0. Hence
i d (s Xpra @) =0 (2.6)

n—0

Next, we show that {x,},<vis a Cauchy sequence. For this it is sufficient to
prove that the subsequence {x,} is a Cauchy sequence, but we suppose in contrary
way that {x»,} is nota Cauchy sequence. Then, there is an € > 0 for which can find
two subsequences {x2,x} and {x2,+} and such that »; is the smallest index for which
ng> mi> k, d(X2mi, Xank, @) 2 € and d(xX2k, X2nk-2, a) < €.

Then (2.6) and the inequality
& < d(xomk, Xonks AY < AX2micy Xonks X2nk-2) + AX2mk, X2nk2, A) + AX2nk-2, X2k, A)

< d(X2miy X2k X20k-2) + A(X2mks X20k-2, Q)
+ d(X20k-2, X2nk, X2nk-1) + A(X20k-25 X20k-1, Q)
+ d(X2nk-1, X2nk, Q)

= d(X2mk, X2nk-2, @) T d(X20k-2, X2nk-1, @) + d(X2nk-1, X2k, Q)
Implies,r}i_)rg d(X2mk, X2nk, ) = €.
Also, (2.6) and the inequality
A(X2mk, X2nk, A) < A(X2mk, X210k, X2mi+1) T A2, X2mi+1, @) +d(X2mie+1, X2nk, Q)
= d(X2mk, X2mic+1, @) T d(X2mic+1, X2k, Q)

Gives e <lim d(X2mk+1, X2nk, Q).
k—w

So, (2.6) and the inequality
Ad(2mi+1, X2nk, @) < d(X2mic+1, X2mk> A) T d(X2mk> X2nk, @) yields
e = lim d(xX2uk, X2mi+1, Q).
k—w0

Taking x =x2k+1, Yy =Xomr in (2.1) and (2.4), we have
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d(X2nir2, Xomier1, @) = V(AT x2u0+1, SX2mp, )

E \P(MI (Tx2nk+1: Sx2mka a)) - ¢(M1(Tx2nk+l, Smeka a))a

where M1(Tx2ui+1, SX2mk, @) = max{d(X2ni+2, X2mk» ), A(X2ni+1, TX2nir1, A),
A(X2mi, SX2mic, ), [(A(x2mi, Tx2nk+1, @)
+d(X2nkr1, SX2mk, @))1/2, [d(X2nkt1, TX20k41, 4)
+ d(X2mk, SX2mk, @)/2, A(X2mk, SX2mk, Q)]
[(1+d(x2nk+1, TX2nk+1, @) /(1 +d(e20nk41, X2mks @))],
d(X2nk+1, Tx2nk+1, O)[(1+d(X2mky SX2mk, @))/
(1+d(x2nk+1, X2mk, @))]}

for whichklim Mi(Txank+1, SX2mk, @) = €.
—0

Hence, we have ¢(¢) < W(g) — ¢(¢g), which is a contradiction with € > 0. It
follows that {x,},ev is a Cauchy sequence in X, and completeness of X ensures the
convergence to a limit, say z € X.

Now, we show that z is a common fixed point theorem of 7'and S. For this,
using (2.1) we get,

WY(d(Tz, Sxonk, a)) < Y(M1(1z, Sx2nk, a)) — Y(M1(1Z, Sx20k, @)

= WY(max{d(z, xont, Q), d(z, Tz, a), d(x2nk, SX2nk, Q),
[dCeonk, Tz , @) + d(z, Sxonk, @)]/2, [d(z, TZ, a)
+ d(x2nk, Sx2uk, A)1/2, d(X20k, SX20k, A)[(1+d(2, T2, a))/
(1+d(z, X2k, Q))], d(z, Tz, a) [(1 +d(x2nk, SX20k, @))/
(1+d(z, X2nk, @))]})
— d(max{d(z, xouk, @), d(z, 1z, a), d(x2nk, SX20k, Q),
[d(xX2nk, T2, @) + d(z, Sxouk, @)]/2, [d(z, T2, a)
+ d(xank, Sx2uk, @)1/2, A(X2nk, SX2nk, A[(1+d(z, 1z, a))/
(1+d(z, x2nk, @))], d(z, Tz, a) [(1+d(xX2nk, SX20k, @))/
(1+d(z, x20i, @))]})

making k —0, we have

Y(d(z, 1z, a)) <Y(d(z, 1z, a)) — ¢(d(z, 1z, a)), which yields z = 7Z.
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Further, we get
Y(d(1z, Sz, a)) < WY(d(1z, Sz, a)) — 6(d(1z, Sz, a))

=WY(max{d(z, z, a), d(z, z, a), d(z, Sz, a), [d(z, z, a)
+d(z, Sz, a)]/2, [d(z, z, a) + d(z, Sz, a)]/2, d(z, Sz, a)
[(1+d(z, z, a))/(1+d(z, 2, a))], d(z, z, @)[(1 +d(z, Sz, a))/
(1+d(z, z, a))]})
—¢(max{d(z, z, a), d(z, z, a), d(z, Sz, a), [d(z, z, a)
+d(z, 8z, a)li2, [dz, 2, a) + d(z, Sz, @)]/2, d(z, 5z, a)
[(1+d(z, z, a))(1+d(z, z, a))], d(z, z, a)[(1+d(z, Sz, a))/
(1+d(z, z, a))]})
implies
Y(d(z, Sz, a)) < W(d(z, Sz, a)) — §(d(z, Sz, a)),
which provides z = Sz. Hence z is a common fixed point of 7'and S.
For uniqueness, we suppose that y is another fixed point of 7'and S, and we have
Y(d(y, z, a)) <Y d(D), Sz, a))
SY(Mi(Ty, Sz, a)) — d(M1(1y, Sz, a))
- ‘P(d(ya Z, a)) - d)(d(ya Z, a)) lmphes
¢(d(y, z, a)) = 0.
Therefore, y=z.
Remark 2.1: Theorem 2.1 is generalization of the result of Arya et al. [13].

Corollary 2.1: Now for ¥ = / (identity) in theorem (2.1), we get the following
corollary-

Let (X, d) be a complete 2-metric space and let 7, S : X — X be two mappings.
Assume that to every x, y, a €X
d(1x, Sy, a) < Mi(Tx, Sy, a)— 6(M1(1x, Sy, a)),

where ¢ is defined as in theorem (1.1). Then there exists a unique point z € X'such
that z=Tz=35z.
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For §'= T"we obtain the following corollary of theorem 2.1.

Corollary 2.2: Let (X, d) be a complete 2-metric space and let 7, S: X — Xbe a
mapping.

Assume that for every x, y, a eX
V(d(Ix, Ty, a)) < ¥ (Mi(Tx, Ty, a)) - o(M1(Ix, 1y, a)),

where ¥ and ¢ are defined as in theorem (1.2). Then there exists a unique point z € X
such thatz=7z.

Taking M, (1x, 1y, a) = d(x, y, a) in theorem (2.1), we get the following
generalization of the results as Dutta et al.[6].

Corollary 2.3: Let (X, d) be complete 2-metric space and let 7, S : X — X be two
mappings.

Assume that for every x, y, a eX
Y(d(Ix, Sy, a)) < W(d(x, y, a)) = §(d(x, y, @),

where W and ¢ are defined as in theorem (1.2). Then there exists a unique pointz € X
such thatz=7z=Sz.

Corollary 2.4: Let (X, d) be complete 2-metric space and let 7, S : X — X 'be two
mappings.
Assume that for every x, y, a eX

W(d(Tx, Sy, a)) < B(N(Tx, Sy, a)) - $(N(Tx, Sy, @),

1+d(x,Tx,a) N
1+d(x,y,a)
and ¥ and ¢ are defined as in theorem (1.2). Then there exists a unique point z e X
such that z= 7z =Sz.

where N(Tx, Sy, a) = max{d(x, y, a), d(y, Sy, a) (
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