ISSN 0972-5504

Applied Science Periodical

Volume - XXIII, No. 3, August 2021

Refereed and Peer-Reviewed Quarterly Periodical

Journal website : www.internationaljournalsiwan.com

Subsequential Convergence in Locally Convex Spaces

by Krishna Kumar Srivastava,

Department of Mathematics,

Government P.G. College, Hamirpur - 210301, India

Abstract:

Given a locally convex Hausdroff linear topological space, we will construct the finest Locally convex topology with the same sequentially compact sets as the initial topology.

Keywords: Locally convex space, Subsequential neighborhood of zero, subsequential space, Sequentially compact set

AMS(1991) Classification Number: 46(B).

1. Introduction:

It is evergreen problem in topology whether it is possible to construct a finest topology without disturbing the character of initial topology. Such a problem was studied by J.H. Webb[6], which prompted us to construct a finest locally convex topology, which has the same sequentially compact sets as the initial topology. Here it may be mentioned that pre-compact sets need not be sequentially compact but converse is true and hence our construction is a more general version of J.H. Webb. We have also examined completeness of X^{\oplus} with respect to topology generated by class of bounded subsets of X.

By X we designate a fixed locally convex topological vector space.

$$X^* = \text{Algebraic dual of } X$$

$$X = (X, \tau)' = \text{Topological dual of } X.$$

$$X^b = (X, \tau)^b = \{ f \in X^* : \sup_{x \in B} |f(x)| < \infty \text{ for all } \tau\text{-bounded } B \subset X \}$$

$$X^+ = (X, \tau)^+ = \text{sequential dual of } X$$

$$= \{ f \in X^* : f(x) \to 0 \text{ for all } \tau \text{ null } \{x_n\} \}$$

$$X^{\oplus} = (X, \tau)^{\oplus} = \text{subsequential dual of } X$$

$$= \{ f \in X^* | f(x_{nk})| \to 0 \text{ for all } \tau \text{ null } \{x_{nk}\} \}$$

Then clearly $X' \subset X^+ \subset X^{\oplus} \subset X^b \subset X^*$.

2. Sequentially Compact:

A set M is called sequentially compact if every sequence of points of M contains a subsequence which is convergent to a point of M.

Now, we will construct the finest locally topology on X with the same sequentially compact sets as the initial topology τ , and e will denote this by τ^s . Two constructions are possible one internal and other external.

2.1 Proposition: Let (X, τ) be a locally convex space and S denote the class of all τ -sequentially compact subsets of X. Let U be the class of all absolutely convex subsets of X, with the condition that $\forall S \in S$, there exist finite number of points $x_1, x_2, ..., x_n$ in S such that

$$S \subseteq \bigcup_{i=1}^{n} (x_i + V)$$
 then,

- (i) $V \in U \Rightarrow \alpha V \in U, \forall \alpha$
- (ii) Every $V \in U$ is absorbent

Applied Science Periodical [Vol. XXIII (3), August 21]

(iii) U is closed under finite intersection.

Proof: (i) As $S \subseteq \bigcup_{i=1}^{n} (x_i + V)$ then since S is τ -sequential compact subset therefore αS is also τ -sequentially compact. Hence $\alpha S \subseteq \bigcup_{i=1}^{n} (x_i + \alpha V)$.

Which implies that $\alpha V \in U$.

(ii) Let $V \in U$ and $x \in X$, consider the set $A = \{\alpha x : |\alpha| \le 1\}$ which is a member of S. A is contained in $\bigcup_{i=1}^{n} (\alpha_i x + V)$ where $\alpha_1, ..., \alpha_n$ are scalars such that $|\alpha_i| \le 1$, i.e., $A \subseteq \bigcup_{i=1}^{n} (\alpha_i x + V)$. If α_0 is any other scalar such that $|\alpha_0| \le 1$ and $\alpha_0 \ne \alpha_i$ (for i = 1 to n). Then $\alpha_0 x \in A$.

So,
$$\alpha_0 x \in \bigcup_{i=1}^n (\alpha_i x + V)$$

$$\Rightarrow$$
 $\alpha_0 x \in (\alpha_j x + V)$ for some j

$$\Rightarrow \alpha_0 x - \alpha_i x \in V$$

$$\Rightarrow$$
 $x \in (\alpha_j - \alpha_0)^{-1} V$, As V is balanced so V absorbs x.

(iii) Let V_1 and $V_2 \in U$, then $V_1 \cap V_2$ is absolutely convex. Let $S \in S$, then there exists points $x_1, x_2, ..., x_m, y_1, y_2, ..., y_n$ in S such that,

$$S \subseteq \bigcup_{i=1}^{n} (x_i + V_1)$$
 and $S \subseteq \bigcup_{j=1}^{n} (y_j + V_2)$,

So,
$$S \subseteq \bigcup_{i,j} (x_i + V_1) \cap (y_j + V_2)$$

Now $z_{ij} \in S \cap (x_i + V_1) \cap (y_i + V_2)$ for some i and j

$$\Rightarrow z_{ij} - x_i \in V_1 \text{ and } z_{ij} - y_j \in V_2$$
 (1)

If
$$z \in (x_i + V_1) \cap (y_i + V_2)$$

$$\Rightarrow z - x_i \in V_1 \text{ and } z - y_i \in V_2$$
 (2)

as V_1 and V_2 are absolutely convex thus,

$$\Rightarrow$$
 $z - z_{ii} \in 2V_1$ and $z - z_{ii} \in 2V_2$

$$\Rightarrow$$
 $z - z_{ii} \in 2(V_1 \cap V_2)$

$$\Rightarrow$$
 $z \in z_{ij} + 2(V_1 \cap V_2)$

$$\Rightarrow$$
 $S \subseteq \bigcup_{i,j} (z_{ij} + 2(V_1 \cap V_2)), \text{ so } (V_1 \cap V_2) \in U$

Take U as a base at 0 for a locally topology on X, which is denoted by τ^s , then $\tau \le \tau^s$. Now by definition every τ^s -sequentially compact subset of X is τ -sequentially compact and every τ -sequentially compact subset of X is τ^s -sequentially compact, so the topologies τ and τ^s have the same sequentially compact sets on X.

3. External Construction of τ^s :

- **3.1 Proposition**: Let $\langle X, Y \rangle$ be a dual pair of linear spaces. Let δ be a class of $\sigma(X, Y)$ closed subsets of X generating on Y. The topology τ_n of uniform convergence of members of η , then following statements are equivalent.
 - (a) Each $M \in \delta$ is τ_n -sequentially compact in X.
 - (b) Each $N \in \eta$ is τ_{δ} -sequentially compact in Y.

Proof: It immediately follows from the fact that sequentially compact set is closed.

3.2 Lemma : Let (X, τ) be a locally convex space, then

(i)
$$X^c = \{ f \in X^* : \sup_{x \in S} |f(x)| < \infty \text{ for every } S \in S \}$$

(ii) If τ_1 is another locally convex topology on X such that τ and τ_1 have the same sequentially compact sets in X then τ and τ_1 have the same closed sets in X.

Proof: (i) Every mackey convergent sequence is sequentially compact sets in X, then τ and τ_1 have the same closed sets in X.

(ii) By (i),
$$(X, \tau)^c = (X, \tau_1)^c$$
 hence $\tau^c = \tau_1^c = \mu(X, X^c)$.

So τ and τ_1 have the same closed sets in X.

3.3 Definition: If (X, τ) is a locally convex space, we will denote by τ^0 the topology on X^c of uniform convergence on the τ - sequentially compact subsets of X.

3.4 Proposition: If (X, τ) is a locally convex space then $\tau^s = \tau^{00}$, where τ^{00} denotes the topology on X of uniform convergence on the τ^0 -sequentially compact subset of X^c .

Proof: In the proposition 3.1, take $Y = X^c$ i.e. consider dual pair (X, X^c) and $\delta = S$ and η the class of τ - equicontinuous subsets of X'. Then $\tau = \tau_n$ and $\tau^0 = \tau_\delta$. So every equicontinuous subsets of X' is τ^0 - sequentially compact. Then $\tau \le \tau^{00}$.

Now take $Y = X^c$ and $\delta = S$ and n the class of τ^0 - sequentially compact subsets of X^c , so every τ - sequentially compact subsets of X is τ^{00} - sequentially compact.

So τ and τ^{00} have the same sequentially compact sets in X.

Now we will show τ^{00} is the finest topology. Let τ_1 is another locally convex topology on X with the same sequentially compact sets as τ . Then by Lemma 3.2 (ii) $(X, \tau)^c = X^c$.

On X^c both the topologies τ^0 and τ_1^0 coincides. So τ^{00} and τ_1^{00} but $\tau_1 \le \tau_1^{00}$, so $\tau_1 \le \tau^{00}$. This shows that τ^{00} is the finest locally convex topology on X with the same sequentially compact sets as τ . Hence $\tau^{00} = \tau^s$.

4. Completeness:

Now we will examine completeness of X^{\oplus} with respect to topology generated by the class of bounded subsets of X.

Let γ be a family of bounded subsets of X, such that $\bigcup \{A : A \in \gamma\}$ spans X. The uniform convergence topology on X^b on the members of γ will be denoted by τ_{y} .

v = the class of sequences in X which are mackey convergent to 0.

 λ = the class of τ -null subsequences of a sequence in X.

4.1 Proposition : If $v \le \gamma$ then (X^b, τ_{γ}) is complete.

It is by [6] proposition 3.1.

4.2 Proposition: If $\lambda \leq \gamma$ then X^{\oplus} is a τ_{γ} -closed subspace of X^b .

Proof: Let $f \in X^{\oplus}$, which is τ_{γ} -closure of X^{\oplus} in X^b , consider a τ -null subsequence of a sequence in X, then there exists $A \in \gamma$ such that $\subseteq A$ since $f \in X^{\oplus}$ so for any $\varepsilon > 0$ there is $g \in X^{\oplus}$ such that f - g is a member of $(\varepsilon/2) \mathring{A}$.

Now choose N such that $|\langle x_n, g \rangle| < \varepsilon/2$ for all n > N. $|\langle x_n, f \rangle| \le |\langle x_n, f - g \rangle| + |\langle x_n, g \rangle|$.

So $|\langle x_n, f \rangle| < \varepsilon$ for all n > N. Hence $f \in X^{\oplus}$. So X^{\oplus} is τ_{γ} -closed in X^b .

4.3 Theorem: If $\lambda \leq \gamma$ then X^{\oplus} is a τ_{γ} -complete subspace of X^b .

Proof: It immediately follows above proposition.

4.4 Definition: Let (X, τ) be locally convex Hausdroff space. We define the family ξ_r in X to be the set of all subsets A of X such that every sequence of points A has a Cauchy subsequence. We define the topology τ^g on X^b to be the topology of uniform convergence on the member of ξ_r .

Define the topology τ^n on X^b to be the topology of uniform convergence on the class of all τ -null subsequences of a sequence in X.

Define the topology τ^0 on X^c to be the topology of uniform convergence on τ - sequentially compact subsets of X.

4.5 Theorem: X^{\oplus} is complete under each of the topologies τ^n , τ^g , τ^0 and $\beta(X^{\oplus}, X)$, (where β denotes the strong topology).

Acknowledgements:

The author would like to thank "Council of Scientific and Industrial Research" New Delhi, India for financial support.

References:

1. Ferrer, J.R., Morales, I. and Sanchez Ruiz, L.M.: Sequential convergence in topological vector spaces, Topology and Its Applications, Vol. 108, Issue 1, pp. 1-6, Nov. (2000).

Applied Science Periodical [Vol. XXIII (3), August 21]

- 2. Hampson, J.K. and Wilansky, A.: Sequences in locally convex spaces, Studia Mathematica, T. XLV., pp. 221-223 (1973).
- 3. Katsaras, K. and Benekas, V.: Sequential convergence in Topological Vector Spaces, Georgian Mathematical Journal, Vol. (2), pp. 151-164 (1995).
- 4. Kelly, J.L. and Namioka, V.: Linear Topological Spaces (1963).
- 5. Kothe, G.: Topological Vector Spaces I (1969).
- 6. Webb, J.H.: Sequential convergence in locally convex spaces, Proc. Camb. Phill. Soc., 64, pp. 341-364 (1968).