The Mathematics Education Volume - LV, No. 1, March 2021

ISSN 0047-6269

Refereed and Peer-Reviewed Quarterly Journal

Journal website: www.internationaljournalsiwan.com

A Brief Study of Projective Limit in a Function Space

by Karuna Kumari Sharma, Research Scholar, Jai Prakash University, Chapra - 841301 E-mail: karunaksharma24@gmail.com

&

Lal Babu Singh, Retd. Associate Professor,
Department of Mathematics,
Jai Prakash University, Chapra - 841301
E-mail: lbsdmjpu@gmail.com

Abstract:

In this paper, we deal with projective limit, projective limit has been defined. It has been defined when $\alpha(f)$ is regular under a defined convergence and also when convergence closed under a defined convergence. We also define when $\alpha(f)$ is limit-closed under some convergence.

It has been proved that $\alpha^*(f)$ is limit-closed under $\alpha^*(f)$ $\alpha(f)$ convergence. We defined when $f_{\lambda}(x)$ is a section of $\psi(x)$ and show that every function in $\alpha(f)$ is an $\alpha(f)$ -limit of its sections.

Keywords: convergence-closed, limit-closed, projective limit, regular.

1. Introduction:

A function $\psi(x)$, in $\alpha(f)$ or outside $\alpha(f)$, is said to be **projective limit** (p-limit) of $f_{\lambda}(x)$ in $\alpha(f)$ relative to $\beta(f)$, and we write $\psi(x) = \alpha(f)\beta(f)\text{-lim}f_{\lambda}(x)$,

when

(i)
$$\int_{0}^{\infty} |g(x)\psi(x)| dx < \infty$$
, for every $g(x)$ in $\beta(f)$, and

(ii)
$$\lim_{\lambda \to \infty} \int_{0}^{\infty} f_{\lambda}(x)g(x)dx = \int_{0}^{\infty} \psi(x)g(x) dx, \text{ for every } g(x) \text{ in } \beta(f)$$

Different $\alpha(f)\beta(f)$ -limits of $f_{\lambda}(x)$ can differ only in sets of x of measure zero.

When $\beta(f) = \alpha^*(f)$, $\psi(x)$ is called a *p*-limit of $f_{\lambda}(x)$ in $\alpha(f)$, and we write $\psi(x) = \alpha(f) - \lim_{h \to \infty} f_{\lambda}(x)$ [cf. I.M., 287].

It follows from the definition that every $\alpha(f)\beta(f)$ -limit belongs to $\beta^*(f)$.

When we say that $\psi(x)$ is the $\alpha(f)\beta(f)$ -limit of $f_{\lambda}(x)$, we mean that $\psi(x)$ is an $\alpha(f)\beta(f)$ -limit of $f_{\lambda}(x)$ and every function equal to $\psi(x)$ for almost all $x \ge 0$ is an $\alpha(f)\beta(f)$ -limit of $f_{\lambda}(x)$.

- (a) If, with a definition of convergence and limit, every family $f_{\lambda}(x)$ in $\alpha(f)$, which has a defined limit and also a λ -limit is such that these two limits are equal for almost all $x \ge 0$, then $\alpha(f)$ is said to be regular under the defined convergence.
- (b) If, with a definition of convergence and limit, every family $f_{\lambda}(x)$ in $\alpha(f)$, which has a defined limit and also a λ -limit, is such that the λ -limit is in $\alpha(f)$, then $\alpha(f)$ is said to be convergence-closed under that definition of convergence.
- (c) If with a definition of convergence and limit, every family $f_{\lambda}(x)$ in $\alpha(f)$, which has a defined limit is such that this limit is in $\alpha(f)$, then $\alpha(f)$ is said to be limit-closed under the defined convergence [cf. I.M., 290].

2. Some Theorem on projective limit:

Theorem (2.I): $\alpha^*(f)$ is limit-closed under $\alpha^*(f)$, $\alpha(f)$ -convergence.

Proof: From the definition of projective limit it follows that all $\alpha(f)\beta(f)$ -limits are in $\beta^*(f)$. Therefore, under $\alpha^*(f)\alpha(f)$ -convergence, the projective limit belongs to $\alpha^*(f)$ and so the result follows.

Theorem (2.II): If $\alpha(f)$ is perfect, it is limit-closed under $\alpha(f)$ -convergence.

Proof: Under $\alpha(f)$ -convergence, (i.e., $\alpha(f)$ $\alpha^*(f)$ -convergence), the $\alpha(f)$ -limit belong to $\alpha^{**}(f)$; and if $\alpha(f)$ is perfect, $\alpha^{**}(f) = \alpha(f)$.

Hence the result follows.

Theorem (2.III): When $\alpha^*(f) \ge \beta(f)$, and $\beta(f) \le \sigma_1(f)$, then every λ -cgt family $f_{\lambda}(x)$ in $\alpha(f)$ is a $\alpha(f)\beta(f)$ -cgt and the λ -limit of $f_{\lambda}(x)$ is an $\alpha(f)\beta(f)$ -limit of $f_{\lambda}(x)$.

Proof: If $f_{\lambda}(x)$ is λ -cgt, then to every $\varepsilon > 0$ there corresponds a positive number $N(\varepsilon)$, independent of x, such that, for almost all $x \ge 0$, $|f_{\lambda}(x) - f_{\lambda'}(x)| \le \varepsilon$, for all $\lambda, \lambda' \ge N(\varepsilon)$.

Therefore, if g(x) is any function in $\beta(f)$, then

$$\left| \int_{0}^{\infty} g(x) \{ f_{\lambda}(x) - f_{\lambda'}(x) \} dx \right| \leq \int_{0}^{\infty} |g(x)| |f_{\lambda}(x) - f_{\lambda'}(x)| dx$$

$$\leq \varepsilon K(g), \text{ (since } \beta(f) \leq \sigma_{1}(f)).$$

for all λ , $\lambda' \ge N(\varepsilon)$ for every $\varepsilon > 0$.

Hence $f_{\lambda}(x)$ is $\alpha(f)\beta(f)$ -cgt.

This proves the first part of the theorem.

Next, let λ -lim $f_{\lambda}(x) = \psi(x)$. Then given any $\varepsilon > 0$, there exists a positive number $N(\varepsilon)$, independent of x, such that for almost all $x \ge 0$,

$$|f_{\lambda}(x) - \psi(x)| \le \varepsilon \tag{2.1}$$

for all $\lambda \ge N(\varepsilon)$.

Choosing any $\varepsilon > 0$, and any $\lambda \ge N(\varepsilon)$.

We have

$$\int_{0}^{\infty} |g(x) \psi(x)| dx = \int_{0}^{\infty} |g(x) \{ \psi(x) - f_{\lambda}(x) + f_{\lambda}(x) \} | dx$$

$$\leq \int_{0}^{\infty} |g(x)| |\psi(x) - f_{\lambda}(x)| dx + \int_{0}^{\infty} |g(x)f_{\lambda}(x)| dx$$

$$\leq \varepsilon K(g) + A(g), \text{ by (2.1)}$$

For every, g(x) in $\beta(x)$, since $\beta(f) \le \sigma_1(f)$ and $\alpha^*(f) \ge \beta(f)$, where K and A are constants depending on g.

Hence

$$\int_{0}^{\infty} |g(x)\psi(x)| \, dx < \infty \tag{2.2}$$

for every g(x) in $\beta(f)$.

Again by (2.1),

$$\left| \int_{0}^{\infty} f_{\lambda}(x)g(x)dx - \int_{0}^{\infty} \psi(x)g(x)dx \right|$$

$$\leq \int_{0}^{\infty} |g(x)| |f_{\lambda}(x) - \psi(x)| dx \leq \varepsilon K(g)$$

for all $\lambda \ge N(\varepsilon)$ for every $\varepsilon > 0$ and for every g(x) in $\beta(f)$.

Therefore,

$$\lim_{\lambda \to \infty} \int_{0}^{\infty} f_{\lambda}(x) g(x) dx = \int_{0}^{\infty} \psi(x) g(x) dx$$
 (2.3)

for every g(x) in $\beta(f)$.

It follows from (2.2) and (2.3) that $\psi(x)$ is an $\alpha(f)\beta(f)$ -limit of $f_{\lambda}(x)$.

This establishes the second part of the theorem.

We observe from theorem (2.III) that, when $\beta(f) \le \sigma_1(f)$, $\alpha(f)$ is regular under $\alpha(f)\beta(f)$ -convergence.

It for a fixed $\lambda > 0$,

$$f_{\lambda}(x) = \begin{cases} \psi(x), & \text{for } 0 \le x \le t \\ 0, & \text{for } x > t \end{cases}$$

Then $f_{\lambda}(x)$ is called a section of $\psi(x)$.

Thus for $\lambda > 0$, we get sections $f_{\lambda}(x)$ of any given function $\psi(x)$.

Now, we proceed to examine sections of all functions belonging to a given function space. It $\alpha(f)$ is a function space, sections of functions in $\alpha(f)$ may belong to $\alpha(f)$, or may not belong to $\alpha(f)$, as for example, sections of functions in $\sigma_{\infty}(f)$, $\sigma_p(f)$, where $1 \le p \le \infty$, $\Gamma(f)$, $\varphi(f)$ and V(f) belong respectively to these spaces where as sections of functions in P(f), the space of essentially bounded periodic functions defined in $[0, \infty)$, do not belong to P(f), also the sections of constant functions do not belong to the space of constant functions.

Theorem (2.IV): If $\alpha(f)$ is such that sections of all functions in $\alpha(f)$ belong to $\alpha(f)$, then every function in $\alpha(f)$ is an $\alpha(f)$ -limit of its sections.

Proof: Let $\psi(x) \in \alpha(f)$, and

$$f_{\lambda}(x) = \begin{cases} \psi(x), & \text{for } 0 \le x \le \lambda \\ 0, & \text{for } x > \lambda \end{cases}$$

Then, by the hypothesis, $f_{\lambda}(x) \in \alpha(f)$.

Now

$$\int_{0}^{\infty} |\psi(x)g(x)| \, dx < \infty \tag{2.4}$$

for every g(x) in $\alpha^*(f)$.

Also,

$$\lim_{\lambda \to \infty} \int_{0}^{\infty} f_{\lambda}(x) g(x) dx = \lim_{\lambda \to \infty} \int_{0}^{\infty} \psi(x) g(x) dx$$
$$= \int_{0}^{\infty} \psi(x) g(x) dx \qquad (2.5)$$

for every g(x) in $\alpha * (f)$.

Hence, by (2.4) and (2.5)

$$\psi(x) = \alpha(f) - \lim f_{\lambda}(x).$$

And the result follows.

References:

- 1. Allen, H.S.: "Projective convergence and limit in sequence spaces", P.L.M.S. (2), 48, (1944).
- 2. Allen, H.S.: "Transformation of sequence spaces", Journal London Math Soc: 31, (1956).
- 3. Cooke, R.G.: "Infinite matrices and sequence spaces", Macmillan, London, 1950.
- 4. Cooke, R.G.: "Linear operators", Macmillan, London, 1953.
- 5. Edward, R.E.: "Functional Analysis" Holt, Rinehart and Winston, Inc., New York, 1965.
- 6. Goffman, C. and Pedrick, G.: "First Course in Functional Analysis", Prentice Hall, India, New Delhi (1974).
- 7. Kamthan, P.K. and Gupta, M.: "Sequence Space and Series", Marcel Dekker, New York (1981).