The Mathematics Education ISSN 0047-6269
Volume - LIX, No. 2, June 2025 .
Journal website: https://internationaljournalsiwan.com
ORCID Link: https://orcid.org/0009-0006-7467-6080 .
International Impact Factor: 7.735 nttps://impactfactorservice.com/home /journal /2295
Google Scholar: https://scholar.google.com/citations?hl=en&user=UOfM8B4AAAAJ
Refereed and Peer-Reviewed Quarterly Journal

Computer Programs for Antimagic Graphs

Used in Encryption
by Dharmendra Kumar Gurjar', Research Scholar,
Auparajita Krishnaa?, Department of Mathematics and Statistics,
University College of Science,
Mohan Lal Sukhadia University, Udaipur-313001, India
Email: 1. phdedudharmendra@mlsu.ac.in 2. akrishnaalgmail.com

(Received: May 20, 2025; Accepted: June 6, 2025; Published Online: June 30,2025)

Abstract:

In recent times, securing the data has become an important task while
transferring it between two parties. Antimagic graphs exhibiting the antimagic
graph labeling scheme play a vital role in developing the encryption techniques
for securing the transferred data. Finding the Cipher texts manually costs much
time, so developing computer programs for the encryption techniques to obtain
the Cipher text easily in minimum time facilitates greatly the task of finding the
Cipher-texts. This paper presents computer programs for the encryption tech-
niques based on Antimagic graph labeling scheme which employ in particular
the lexicographic order of permutations of edge labels for the Path graphs and

Cycle graphs using the C++ programming language. Outputs of the results are
also presented.

[S1]

52 The Mathematics Education [Vol. LIX (2), June 25]

Keywords: Lexicographic order, permutation, Antimagic graph labeling, Antimagic
Graph, Path, Cycle, Encryption, Plain text, Cipher text, Plain text, Antimagic Label
Matrix.

1. Introduction:

Encryption is the important aspect for the cryptographic process. Encryp-
tion 1s the process of hiding the message while transferring it from one party to the
other party. The original message which the sending party sends is called the plain
text message and the hidden(encrypted) message is called the cipher text. In Graph
Theory, a graph labeling 1s an assignment of numbers to either the edges or vertices
or both depending on some conditions. If the vertices(edges) are labeled/numbered
then the graph labeling is called vertex (edge) labeling. Use of labeled graphs in
developing the encryption processes gives a new dimension to Cryptography in
enhancement of security since the structure of the graph and the graph labeling
scheme employed is not known to the unwanted third party.

Antimagic labeling of a graph has been introduced by Hartsfield and Ringel
[1] and for concepts of Graph Theory, Balakrishnan and Ranganathan [2] can be
referred to. An antimagic labeling of a graph is such that for a graph G(p, ¢) with
p number of vertices and ¢ number of edges, the g edges are numbered (labeled)
with 1,2, 3,..., g such that the sum of the edge labels incident on a vertex is distinct
for each vertex. A graph exhibiting an antimagic labeling is called an antimagic
graph. Prihandoko, Dafik and Agustin [3] present super (a, d)-H antimagic total
graph to generate encryption keys which can be used to establish a stream cipher.

In this paper, a kind of antimagic labeling making use of the concept of
lexicographic order of permutations in the edge labels is being used. The lexico-
graphic order of permutations and combinations is as given in Liu[4] and follow
the dictionary order. For example, in factorial 4, 1 2 3 4 is permutation I while
1 2 4 3 is the permutation 2.

The permutations used in lexicographic order for labeling the edges in an
antimagic labeling is a particular way of labeling with permutation 1 and permu-
tation 2 for Path and Cycle graphs as given in Krishnaa and Dulawat [S]. The
permutations of lexicographic order of antimagic labeling, and Paths and Cycles
have been chosen respectively for this work as they are easy to remember and these

The Mathematics Education [Vol. LIX (2), June 25] 53

graphs are relatively simpler in structure for developing the computer programs
for demonstration purpose. The use of computers in applications of Graph Theory
can also be seen in Krishnaa|6] and Krishnaa[7] where Krishnaa[6] has developed
algorithms and a generalized computer software to test the existence of the major
labeling schemes (harmonious, felicitous, sequential, graceful, antimagic and
magic) for an arbitrary graph based on lexicographic order of permutations and
combinations. Using this software, Krishnaa [7] has explored opportunities which
would not be otherwise possible manually for various kinds of labelings for differ-
ent kinds of graphs. Gurjar and Krishnaa[8] have discussed and introduced
encryption techniques using lexicographic labeled graphs for different kinds of
graphs like antimagic and felicitous Paths, antimagic cycles and antimagic
Complete Graph. The antimagic Path and antimagic Cycle along with their
cryptographic algorithms have been taken from Gurjar and Krishnaa[8] for
developing the computer programs in this proposed paper to automate the process
of computing Cipher texts using C++ computer language. Fundamental tools for
the C++ programming are being mentioned in Schildt[9]. Vasuki, Shobana and
Roopa [10] present the use of face antimagic labeling on double duplication of
graphs using Hill cipher for encryption and decryption. Antimagic graphs in
Cryptology have been presented in Krishnaa [11] and using Sanskrit for enhanced
secrecy of hiding the plain text message in [12].

2. Main Results:

There are graph labeling schemes in which the edges are labeled, which
results in induced vertex labels. Antimagic labeling is one of those labeling. Antimagic
labeled graphs are the graphs which are having antimagic labeling.

Antimagic labeling is defined as if the edges for any graph are numbered
with 1, 2,..., g then the induced vertex label which is obtained by adding the edge
labels of all the incident edges on a vertex is distinct for each vertex.

2.1 Antimagic Labeling of Path and Cycle Graphs:

Path graph with odd number of edges can be made antimagic if we use
permutation 2 on edge labels of the graph. If they have even number of edges then
we will use permutation 1 on edge labels for making them antimagic.

54 The Mathematics Education [Vol. LIX (2), June 25]

1 3 2
N/ -
Figure 2.1.1: Antimagic Path G(4, 3); Permutation 2 is used on edge labels

1 2 3 4

e ——

Figure 2.1.2: Antimagic Path G (5, 4); Permutation 1 is used on edge labels

In case of Cycle graphs, which have even number of vertices/edges, we will
use permutation 2 on the edge labels of the graph and for the cycles having odd

numbers of vertices/edges, we will use permutation I on the edge labels for making
the Cycle graphs antimagic.

Figure 2.1.3: Antimagic Cycle with odd vertices; Permutation 1
is used on edge labels clockwise.

Figure 2.1.4: Antimagic Cycle with even vertices; Permutation 2
is used on edge labels clockwise.

The Mathematics Education [Vol. LIX (2), June 25] 55

Antimagic Label Matrix:

For any graph G(p, q) where p is the number of vertices and ¢ is the number
of edges, a square matrix of order p X p is said to be antimagic label matrix if
entries a(i, j) of this matrix are the edge label assigned to the edge formed by
vertices labeled with induced vertex labels i and ;. If no such edge label exists then

entry a(i, j) = 0.
2.2 Encryption Algorithm:
Antimagic Path:

a) Label the edges with permutation 2 to obtain antimagic labeling for Path
of n even vertices and permutation I to obtain antimagic labeling for Path
of odd vertices.

b) Assign the letters of plain message to the antimagic edge labels from left
to right.

c) Prepare the Antimagic Label Matrix for antimagic Path of even number of
vertices using permutation 2 and for antimagic Path of odd number of
vertices also.

d) Four schemes for encryption are being presented here to obtain the cipher
text:

Scheme (a):
C; = M, + (vertex label to the right of M;) fori=1to (n-1).

Where M, is the i ™ Jetter of the plain text and C;isthei M Jetter of
the cipher text from left to right.

Scheme (b):
C; = M, + (vertex label to the left of M;) fori=1 to (n - 1).

Where M; is the i M Jetter of the plain text and C;isthe i M Jetter of
the cipher text from left to right.

56

The Mathematics Education [Vol. LIX (2), June 25]

Scheme (¢):
C; = M, + (sum of right and left vertex labels) fori =1 to (n - 1).
Scheme (d):

C; = M;+ (absolute value of difference of right and left vertex labels)
fori=1to(n-1).

Send the Antimagic Label matrix of this antimagic Path graph along with
notifying the scheme of encryption from among the 4 schemes in above
step and send this information to the receiver.

Antimagic Cycle:

a)

b)

d)

Label the vertices of Cycle of even number of vertices/edges with permu-
tation 2 to obtain antimagic labeling and with permutation 1 for Cycle
with odd number of vertices/edges taking the labels are clockwise.

Assign the 1% letter of message as M 1 and so on. Assign these letters of the
plain text to the induced edge antimagic labels clockwise.

Prepare the Antimagic Label Matrix for the Cycle graph.

Four schemes for encryption are being presented here to obtain the cipher
text:

Scheme (a):
C; = M, + (vertex label to the right of M;) fori=1to (n-1).

Where M, is the i ™ letter of the plain text and C; is the i'™ letter of
the cipher text.

Scheme (b):
C; = M, + (vertex label to the left of M;) fori=1 to (n - 1).

Where M, is the i ™ letter of the plain text and C;isthei M letter of
the cipher text.

The Mathematics Education [Vol. LIX (2), June 25] 57

Scheme (c¢):
C; = M; + (sum of right and left vertex labels) for i =1 to (n - 1).
Scheme (d):

C; = M;+ (absolute value of difference of right and left vertex labels)
fori=1to(n-1).

e) Send the Antimagic Label Matrix of this Cycle graph along with notifying
the scheme of encryption from among the four schemes in above step and
send this information to the receiver.

2.3 Computer Program for the Encryption Technique:

(A) Antimagic Path (Upper Case Letter):
//Code for ANTIMAGIC Path labeled in lexicographic order (Upper case letters).

#include<iostream>

#include<stdio.h>

#include<string.h>

#include<math.h>

using namespace std;

int main()

{

int edge[100], ver[100], sum[100], diff[100], sw, n;

char rstr[100], Istr[100], add[100], mod[100];

cout<< “This program computes the cipher text using lexicographic order for antimagic
paths (permutation 1 is used for labeling in path having odd number of vertices/even number
of edges and permutation 2 is used for labeling in path having even number of vertices/odd
number of edges to maintain antimagic labeling).\n\n"’;

cout<< “In this programme, 4 schemes have been presented to find cipher text:\n”;

cout<< “l. Adding the vertex label of the right side to the character of the message.\n”;

cout<<“2. Adding the vertex label of the left side to the character of the message.\n”;

cout<<“3. Adding sum of right & left vertex label to the character of the original
message.\n”’;

cout<< “4. Adding absolute value of the difference of right & left vertex label to the
character of the original message.\n\n”;

58 The Mathematics Education [Vol. LIX (2), June 25]

cout<< “This program is for Upper case letters.\n\n"’;
cout << “Enter the number of character (NO. OF EDGES) in message? ="’;

cin>>n;
cout << “Enter the numbers from 1 to number of edges: ”;
edge[0]=0;
for (inti=1; i<n+1; ++i)
{
cin>> edge][i];
}
if(n%2==1)
{
sw=edge[n];

edge[n]=edge[n-1];

edge[n-1]=sw;

§

cout << ‘“‘nThe edge labelings are: ’;
// Print edges

for (inti=1; i<n+1; ++1)

{

cout <<edge[i] <<*“ ”;

§

cout <<‘“‘nThe vertex labelings are: ”’;
// Print vertices

edge[n+1]=edge[0];

for (inti=0;1<n+1;++i)

{

ver[i+1]=edge[i]+edge[i+1];

cout <<ver[i+1]<<* ”;

§

cout << “\nENTER THE ORIGINAL MESSAGE STRING IN UPPER CASE =\n”;

cin >>lstr;

strepy(rstr, Istr);

strcpy(add, Istr);

strcpy(mod, Istr);

cout<<“OUTPUT CIPHER MESSAGE =\n";

for(int i=0; Istr[1]!= \0’; i++)

{

The Mathematics Education [Vol. LIX (2), June 25]

ver[it+1]=ver[i+1]%26;
ver[i+2]=ver[i+2]%26;
Istr[i]=Istr[i]+ver[i+1];
rstr[i]=rstr{i]+ver[1+2];
sum|[i]=ver[i+1]+ver[i+2];
sum[i]=sum[i]%026;
add[i]=add[i]+sum[i];
diff[i]=ver[i+1]-ver[i+2];
diff[i]=diff]1]%26;
mod[i]=mod[i]+abs(diff]i]);
if ((Istr[1]<=90)& &(Istr[1]>=65))

{
Istr[n+2 =lIstr|i];
§
else
{
Istr[i] =65+str[i]-91;
Istr[n+2 =lIstr|i];
§
if ((rstr[i]<=90)&&(rstr[i]>=65))
{
rstr[n+2]=rstr[i];
§
else
{
rstr[1] =65+rstr[i]-91;
rstr[n+2]=rstr[i];
§
if ((add[1]<=90)&&(add[i]>=65))
{
add[n+2]=add[i];
§
else
{

add[i] =65+add[i]-91;
add[n+2]=add[i];

59

60

(B)

The Mathematics Education [Vol. LIX (2), June 25]

if (mod[i]<= 90)&&(mod[i]>=65))
{

}

else

{

mod[n+2]=mod[i];

mod[i] =65+mod[i]-91;

mod[n+2]=mod[i];
¥
cout <<“Cipher Text for Scheme 1 is: 7’ <<rstr<<endl;
cout <<“Cipher Text for Scheme 2 is: ”” <<Istr<<endl;
cout <<“Cipher Text for Scheme 3 is: >’ << add<<end];
cout <<“Cipher Text for Scheme 4 is: ”” <<mod<<endl;

return 0; }

Antimagic Cycle (Upper Case Letter):
//Code for ANTIMAGIC Cycle labeled in lexicographic order (Upper case letters).

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
intmain()
{
int edge[100], ver[100], sum[100], diff[100], sw, n, g;
char rstr[100], Istr[100], add[100], mod[100];
cout<< “This program computes the cipher text using lexicographic order for antimagic
cycle \n\n”;
cout<< “In this programme, 4 schemes have been presented to find cipher text:\n”;
cout<< “l. Adding the vertex label of the right side to the character of the message.\n”;
cout<<“2. Adding the vertex label of the left side to the character of the message.\n”;
cout<<“3. Adding sum of right & left vertex label to the character of the original
message.\n”’;
cout<< “4. Adding absolute value of the difference of right & left vertex label to the
character of the original message.\n\n”;

The Mathematics Education [Vol. LIX (2), June 25] 61

cout<<“This program is for Upper case letters.\n\n"’;

cout << “Enter the number of characters (NO. OF EDGES) in Original message? =",
cin>>n;

cout << “Enter the numbers from 1 to number of characters in Original message: ’;
for (inti=1; i<n+1; ++i)

{
cin>>edge[i];
§

if(n%2!=1)

{
sw=-edge[n];

edge[n]=edge[n-1];
edge[n-1]=sw;
}
cout << “The edge labelings are: ’;
// Print edge
for (inti=1; i<n+1; ++i) {
cout <<edge[i] <<“ ”;
}
cout << ‘“‘nThe vertex labelings are: ’;
// Print vertices
edge[n+1]=edge[1];
for (inti=1;1<n+1; ++i) {
ver[i]=edge[i]+edge[i+1];
cout <<ver[i] <<* ”’;
}
ver[O]=ver|n];
cout << “‘\nENTER THE ORIGINAL MESSAGE STRING IN UPPER CASE =\n”;
cin >>[str;
strepy(rstr, Istr);
strepy(add, Istr);
strcpy(mod, Istr);
cout<<“OUTPUT CIPHER MESSAGE =\n";
for(int i=0; Istr[1]!= \0’; i++)
{
ver[i]=ver[i]%26;
ver[i+1]=ver[i+1]%26;

62

The Mathematics Education [Vol. LIX (2), June 25]

Istr[i]=lIstr|i]+ver]i];
rstr{i]=rstr[i]+ver[i+1];
add[i]=add[i]+(ver[i]+ver[it+1])%26;
diff[i]=ver{i]-ver[i+1];
difffi]=diff]i]%26;
mod[i]=mod[i]+abs(diff]i]);

if (Istr]i]<=90)& &(Istr[1]>=65))

{

Istr[n+1]=Istr[i];

h

else

{
Istr[1] =65+Istr[1]-91;
Istr[n+1]=Istr[i];

j

if (rstr[i]<= 90)&&(rstr{i]>=65))
{

rstr[n+1]=rstr[i];

}

else

{
rstr[i] =65+rstr[i]-91;
rstr[n+1]=rstr[i];

}

if ((add[i]<= 90)&&(add[i]>=65))

{
add[n+1]=add[i];

¥

else

{
add[i] =65+add[i]-91;
add[n+1]=add[i];

¥

if (mod[i]<=90)&&(mod[i]>=65))
{

}

mod[n+1]=mod[i];

The Mathematics Education [Vol. LIX (2), June 25] 63

else

{
mod[i] =65+mod[i]-91;
mod[n+1]=mod][i];

¥3

cout <<“Cipher Text for Scheme 1 is: 7’ <<rstr<< end];

cout <<“Cipher Text for Scheme 2 is: ”’ <<Istr<<endl;

cout <<“Cipher Text for Scheme 3 is: << add<<end]l;

cout <<“Cipher Text for Scheme 4 is: ”’ << mod<<end],;
return 0; }

2.4 Outputs of the Computer Programs:

Here we have taken two examples one for Antimagic Path and another for
Antimagic Cycle.

Ex. 1. Antimagic Path G(6, 5):

G R A P H
\
OginOzinOninOninOnin0
Figure 2.4.1: Antimagic Path G(6, 5) with even number of vertices with
Permutation 2 of edge labels and assigned the letters G, R, A, P, H

1 3 5 8 9 4
Plain Text: GRAPH 1 o 1 0 0o o 0]
. 3 /1 0 2 0 0 0
Cipher Texts: JWIYL (Scheme 1) 5 0 2 0 3 0 0
HUFXQ (Scheme 2) § 10 0 3 0 5 0
9 o 0 0 5 0 4
KZNGU (Scheme 3) 4 0O 0 0 0 4 0
ITDQM (Scheme 4) | Figure 2.4.2: Antimagic Label Matrix for
chosen Path

64 The Mathematics Education [Vol. LIX (2), June 25]

Ex. 2. Antimagic Cycle:

Figure 2.4.3: Antimagic odd Cycle with letters of message G, R, A, P, H
assigned clockwise to the edge labels with Permutation 1

3 5 7 9 6
Plain Text: GRAPH 3 0 2 0 0 1
Cipher Texts: JIWHYN (Scheme 1) 512 0 3 0 0
7 0O 3 0 4 0
MUFWQ (Scheme 2) 9 0O 0 4 0 5

PZMFW (Scheme 3) 6 1 0 0 5 0

JTCRK (Scheme 4) Figure 2.4.4: Antimagic Label Matrix for
chosen Cycle

The Mathematics Education [Vol. LIX (2), June 25] 65

W

Fle ot Search View Project Brecute Tooks AStyle Window Help

DENRER B AEEE 440 POBE V| X/ D8 mewcss obicrlese v

Eﬂﬁ[ﬂ gLc0aL) 7 GAPhD Thesi OKG PHD CODE el code AANTIVAGI PATHNALCODE e - 0X
LGSV i s progran computes the cipher text using lexicographic order for ant pernutation 1 is used for labe

ing in path havi n

8l

in messa

v
)
EE Compiler %Resuurc
- Warnings: 0 A
- Qutput Filename: G
- Qutput Size:
- Compilation Time: 2.16
(]Shorten compiler pths v
¢)

lng 111 Cob 18 Sek 0 lines 16 Length 3021

i o = B
H,OTypeheretosearch 05 AN IR Q NIAO"E @ raufon any

Insert Done parsing in 0019 seconds

Figure 2.4.5: Code result for Antimagic Path G (6, 5) with
Plain Text ‘GRAPH’

66 The Mathematics Education [Vol. LIX (2), June 25]

"

file Edit Search View Project Execute Tooks AStyle Window Help

DENVESIE|~~ BE/EE| 440 |BOBE| V|8 i 8] o 12 o sine v

d @0 igbas) v v

Puject Clsses Debug 1 G:\PhD Thesis\DKG PHD CODE'final code\ SANTIMAGIC CYCLE FINALCODE exe - 0 X

order for antim o

nade to compute the cipher

Lower case le

v
E% Compler @ Resourcg
A
: G:\PhD Thesis\DKG PHD CODE\final code\SANTIMAGIC CYCLE FINALCODE.exe
2104492 MiB
- Compilation Time: 1.05s
[Shorten compiler paths v
¢)
Line 137 Cok 71 Sek 0 Lines: 143 Length: 5568 nsert Done parsing in 0013 seconds
) o = a " T B3
HPTypeheretosearch 080N B™9 Q NI TO"™@ O ramBan AR Ep

Figure 2.4.6: Code result for Antimagic Cycle with
Plain Text ‘GRAPH’

3. Results and discussion:

Output Cipher texts for some plain texts are being mentioned here in table
given below for antimagic path and antimagic cycle.

The Mathematics Education [Vol. LIX (2), June 25] 67
Table 3.1: Cipher Texts for given Plain Text in different Cases
Plain Text 4 Cipher Text
(nisthenumberof |3
character in Plain text) ,ED Antimagic Path Antimagic Cycle
1 JWIYL JWHYN
GRAPH 2 HUFXQ MUFWQ
(n=5) 3 KZNGU PZMFW
4 ITDQM JTCRK
1 HSJAJCIZHX HSJAJCIAHX
ENCRYPTION |2 FQHYHAGXFG OQHYHAGXGG
(n=10) 3 IVOHSNVOYQ RVOHSNVPZQ
4 GPETARVKQW LPETARVLPW
1| FWFYEBVITKEXQU FWFYEBVITKEXQUT
CRYPTO.- TJIODK JNDM
2| DUDWCZTGRICVO WUDWCZTGRICVO
GRAPHY SRHLCD SRHLBD
PROCESS 3| GZKFNMIXKDZUP ZZKFNMIXKDZUP
(n=19) VWOVNV VWOUMX
4 ETARVQITCRJAN TTARVQITCRJAN
TQEHTZ TQEGUB
1| OJERNBVITKEHDO OJERNBVITKEHD
FINWRSXKVMGS OFINWRSXKVNGS
LEXICOGRA- [1" MHCPLZTGRICFBM LHCPLZTGRICFBM
PHIC LABELED DGLUPQVITKER DGLUPQVITKFR
GRAPHS 3| PMIYWMIXKDZECP OMJYWMIXKDZEC
(n=26) INUFCFMBOHDR PINUFCFMBOIER
4| NGZKEQITCRJKAN OGZKEQITCRJKA
CDGNGFITCRIR NCDGNGFITCSIR
1 | DSARXNVZVBOZQKX | DSARXNVZVBOZQKX
ANTIMAGIC BBPQXEXIZQZSYQXR | BBPQXEXIZQZSYPXT
2 |BQYPVLIXTZMXOIVZZ | GQYPVLTXTZMXOIVZZ
GRAPHS USED IN| | 0y CVGXOXQWNWW | NOVCVGXOXQWNVW
ENCRYPTION 3" 'EVFYGYIOMUJWPLAG | JVFYGYIOMUJWPLAG
(n=731) IYBKTOBUNYTBVFA | IYBKTOBUNYTBUEC
4 | CPVKOCIKEITCNJUW | DPVKOCIKEITCNJUW
UGFKPGPETWRVLPS | UGFKPGPETWRVKQQ

68 The Mathematics Education [Vol. LIX (2), June 25]

Similarly, we can make computer programs for encryption techniques con-
verting plain text message in small case letters to cipher text message in small case
letters also.

4. Conclusion:

This paper has presented the computer programs developed using C++ for
antimagic Paths and antimagic Cycle graphs employing the lexicographic order
of permutations of edge labels. The outputs of the computer programs also have
been presented. Manual calculations take a lot of time when the graphs are large so
these computer programs can be used for large graphs as well when the message to
be transferred is large thus saving a lot of time as well along with ease of compu-
ting the Cipher-texts.

Acknowledgement:

The INSPIRE Fellowship has been provided to the first author to carry out
his Ph.D. work by the Department of Science and Technology (DST), Ministry of
Science and Technology, Government of India under the supervision of the second
author.

References:

1. Hartsfield N. and Ringel G. (1990) : “Pearls in Graph Theory : A Compre-
hensive Introduction”, Academic Press, Boston.

2. Balakrishnan R. and Ranganathan K. (2012) : “ A Textbook of Graph Theory”,
Springer.

3. Antonius Cahya Prihandoko, D. Dafik and Ika Hesti Agustin (2019) : “Imple-
mentation of super H-antimagic total graph on establishing Stream cipher”,
Indonesian Journal of Combinatorics, 3(1), 14-23.

4. C.L.L1u (1978) : “Discrete Mathematics”, Tata McGraw Hill, India.

5. Auparajita Krishnaa and M.S. Dulawat (2009) : “Lexicographic Ordering
in Graph Labellings of Cycles, Paths and Complete Bipartite Graphs”, South
East Asian Journal of Mathematics and Mathematical Sciences, 7(2),
87-93.

The Mathematics Education [Vol. LIX (2), June 25] 69

. Auparajita Krishnaa (2001) : “Computer Modelling of Graph Labellings”,
proc. National Conference on Mathematical and Computational Models,
293-301, Coimbatore, India, Allied Publishers, India.

. Auparajita Krishnaa (2012) : “On the Use of Computers in Graph labeling”;
International Journal of Computer Science and Communication, 3(1),
191-197.

. Dharmendra Kumar Gurjar and Auparajita Krishnaa (2021) : “Lexicographic
Labeled Graphs in Cryptography”; Advances and Applications in Discrete
Mathematics, 27(2); 209-232. doi: http://dx.doi.org/10.17654/DM
027020209

. Herbert Schildt : “The Complete Reference C++”, Third Edition, Tata-
McGraw Hill, India, 1999.

10.B. Vasuki, L. Shobana and B. Roopa (2022) : “Data Encryption Using Face

Antimagic Labeling and Hill Cipher”, Mathematics and Statistics, 10(2),
431-445.

11. Auparajita Krishnaa (2024) : “Some Applications of Antimagic Graphs in

Cryptology”, The Mathematics Education, LVIII(1), 1-10.

12. Auparajita Krishnaa (2025) : “Complex Cipher Texts from Complete Graphs

Including by using Sanskrit in Cryptology”, Arya Bhatta Journal of Math-
ematics and Informatics, 17(1), 19-38.

