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Abstract :

We find the conditions imposed on the metric of a spacetime by requiring
that its spacelike hypersurfaces possess, at a given scale, more than one Eucli-
dean crystalline symmetry. Such spacetimes gather into four classes. We show
that three of these classes correspond to spacetimes without physical meaning.
It follows that no material object can be created with the perfect crystalline struc-
ture belonging to these three classes. This result implies contradictions between
general relativity and crystallography.

1. Introduction :

The classical theory of general relativity is commonly believed to apply
from the cosmological to the Planck scales, where it should be replaced by a still
elusive theory of quantum gravity. But the domain of applicability of general

[1]
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relativity could be not so well delimited. We have indeed shown in [1] that general
relativity and quantum mechanics cannot be applied simultaneously at the atomic
or molecular scales without intrinsic contradictions about their predictions, even
if the spacetime is everywhere of weak curvature. This results from the fact that
every spacetime determined by a nonspherically symmetric body with the symme-
try of any one of the five Platonic solids has a curvature tensor which vanishes in a
neighbourhood of the centre of this symmetry. Such a body must then have an empty
centre of symmetry.

In the present paper, we investigate the consequences of assuming that the
space part of a spacetime has a symmetry which often applies to bodies of'a scale just
above the one of molecules, viz a crystalline symmetry. Within classical general
relativity, we shall determine the conditions imposed on the metric of a spacetime by
requiring that its spacelike hypersurfaces possess, at a given scale, more than one
Euclidean crystalline symmetries. Spacetimes of this kind will be said to have a
polycrystalline symmetry. The 3D Euclidean crystallography shows that there are
four classes of polycrystalline symmetries. Using purely geometric arguments, we
shall obtain the general form of the metric for spacetimes of each of these classes.
This will allow us to show that three of these classes correspond to spacetimes
without physical meaning. It follows that no material object can be created with the
exact polycrystalline symmetry of any one of the first three classes. We shall see
that this contradicts results from crystallography. The general form of the curva-
ture tensor for spacetimes of the fourth class is also determined. The general forms
of the metric and the curvature tensor for spacetimes of the fourth class could be
used as starting points for the determination, through Einstein’s equations, of the
effective metric of any spacetime with this kind of symmetry.

We have organized this paper as follows. In Section 2, we explain the con-
cept of polycrystalline symmetry. In Section 3, we relate this kind of symmetry to
the 3D lattice unit cells identified by Bravais and show that spacetimes with this
symmetry gather into four classes. Section 4 describes how to obtain the general
forms of the metric for a spacetime with a polycrystalline symmetry. This will
allow us to assert that spacetimes belonging to three of these classes are physically
meaningless. Section 5 gives the general form of the curvature tensor for the only
class of spacetimes with polycrystalline symmetry which may correspond to some-
thing real. Finally. Section 6 is devoted to the conclusion and an interpretation of
our results.
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2. Crystalline and polycrystalline symmetries :

We are interested in a characterization of spacetimes whose spacelike
hypersurfaces have an Euclidean crystalline structure at a given scale. More specifi-
cally, we want to describe the spacetimes with spacelike hypersurfaces having a 3D
Euclidean crystalline structure which can be generated by more than one
distinct Bravais unit cell. This crystalline structure possesses more than one space
lattice. The transitions between such lattices are performed through a linear transfor-
mation corresponding to a change of the crystallographic coordinate system. The
crystalline structure of these spacelike hypersurfaces is invariant under this kind of
transformations. The spacelike hypersurfaces having the above invariance property
will be said to have a polycrystalline structure. We shall say that a spacetime V, hasa
polycrystalline symmetry if to each transformation 4 preserving the polycrystalline
structure of its spacelike hypersurfaces, there corresponds a transformation of ¥,
into ¥, also denoted by A, which leaves invariant the metric and the tensor curvature
of V,. Such a transformation applies to both static and non-static V.

To find the general forms of the metric for a spacetime with a polycrystal-
line symmetry, one needs to describe the structure of 3D Euclidean crystals. This
description rests on six parameters among which three are vectors a, b, ¢, and three
are scalars o, B, 7. The first three are concurrent edges of the structure’s basic
parallelepiped called unit cell, while the last three are the angles made by the
corresponding edges, i.e. between the pairs (b, ¢), (¢, a) and (a, b), respectively. A
crystalline structure can then be seen as the lattice generated by the repetition
through space of a unit cell keeping the orientation.

The group of symmetry, or space group, of a crystalline structure is the
combination of all possible transformations which leave invariant the structure.
This group is the direct product of the unit cell point group, with the group of
discrete translations of the structure lattice. The crystalline structure symmetry
restricts the number of possible lattices in the 3D Euclidean space E°. The lattices
realizable in £° are specified by their unit cells which have been identified by Bravais
(seee.g. [2],p. 79).
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3. The fourteen Bravais unit cells ;

The notion of primitive cell is needed to present the Bravais classification.
A unit cell is called primitive if it contains no interior lattice points, being other-
wise non-primitive. The primitive cells are the most fundamental, since such a cell
immediately defines the lattices. However, a non-primitive cell can sometimes
exhibits symmetry features not otherwise apparent.

The most symmetric unit cell is the cube. Extending or contracting one of
its edges produces the tetragonal cell. Extending or contracting a second edge pro-
duces the orthorhombic cell. Changing one of the angles from 7/2 produces the
monoclinic cell. Changing a second angle from 7/2 produces the triclinic cell.
There exist two further cells which do not fit directly into the preceding scheme.
First, extending or contracting a cube uniformly along one of its diagonals
produces a rhombohedron. Secondly, changing the angle vy of the tetragonal cell
from /2 to 21/ 3 produces a hexagonal cell, so called since this cell generates the
primitive hexagonal lattice. It can be proved that the rhombohedral cell is equiva-
lent to a double-centred hexagonal cell. However, it is often convenient to treat
this as a different system. Accordingly, the primitive unit cells may be classified
into seven standard systems depending on their symmetry properties.

Together with the preceding seven full cells, there are seven other indepen-
dent non-primitive cells which share their symmetry properties. These are first the
cubic, tetragonal, orthorhombic and monoclinic body-centred cells. Secondly, there
1s the orthorhombic end-centred cell. Finally, there are the cubic and orthorhombic
face-centred cells. The primitive, body-, end- and face-centred cells are respec-
tively designated by P, 1, C and F. The rhombohedral or its equivalent non-primitive
hexagonal cell is identified by R. More than one lattice, each one resulting from
the juxtaposition of one given Bravais cell, can lie within one another to form a
complex crystalline structure.

Five of the Bravais unit cells are simple in the sense that each of these is
associated with a unique space lattice. The other nine Bravais unit cells can be used
in more than one crystalline lattice of E3. These latter unit cells gather into four
classes which we shall identify by words and with the crystallographic international
symbols : 1) the rhombohedral and hexagonal cells (R3m) ; 2) the end-centred
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monoclinic (C2/m) and orthorhombic (Cmmm) cells; 3) the face-centred ortho-
rhombic (Fmmm) and cubic (Fm3m) cells; 4) the body-centred orthorhombic
(Immm), tetragonal (/4/mmm) and cubic (Im3m) cells.

If a, b, c are the vectors generating the space lattice made with rhombohe-
dral cells, and &', &', ¢’ are the vectors generating the lattice made with hexagonal
cells, it is easily shown that the linear transformation 4, between these sets of

vectors is given by
1 -1 0
0 1 -1].
I 1L 1

Similarly, the transitions between the space lattices associated with the second,
third and fourth classes of unit cells may be expressed, respectively, by the matrices

([2]. p- 620)

1 1 0 -1 1 1 g 1 1
001 1 1 -1 i & 98

4. Polycrystalline metrics :

We determine all the general forms a spacetime metric can take, when the
spacetime obeys a polycrystalline symmetry. Let us first assume that the spacetime
V4 has a 3 coordinate system x,i=0, 1,2, 3, in which ¥, can be sliced into a family
of spacelike hypersurfaces, x° being constant over each member of the family. Let
ds be the infinitesimal distance between two nearby points of V. The coordinate
differences dx’, i=0, 1, 2, 3, between these points are the components of a vector
dr in V,. The squared element of length ds? of ¥, can then be seen as a quadratic
form of the vector dr. If we designate by (g;; (x%, x', x2, x*)) the matrix representa-
tion of this quadratic form with respect to the coordinate system x%, i =0, 1, 2, 3,
then

ds? = gydx"dxf.
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We now consider a change of coordinate system for ¥, and designate by
¥, i=0, 1,2, 3, its new coordinate system. With respect to ¥, the square of the
element of length of V, is given by

ds? = g dx'dx/,

where g, = (%%, x', x2, %3). Let us assume that this change of coordinate system
leaves invariant the hypersurface decomposition and the time coordinate labels of
each hypersurface of the family while at the same time transforming the spacelike
coordinates according to one of the matrices 4,, k= 1, 2, 3, 4. This implies that for
each k= 1,2, 3, 4, the coordinate differences of two neighbouring points of V', are
related by

(dxY, dx!, dx?, df3)T =dy (dxY, dx!, dx?, dx3)T,
where

A, = diag(1, 4,), k=1,2,3,4.

Since such changes of coordinate system leave unchanged the inherent crystalline
structure of the spacelike hypersurfaces, the metric of the corresponding spacetime
must be the same in both the old and the new coordinate systems.This means that

g{_}_(f[), fl’ f2, f3) — gg(xo_’ x', x2’ x3)

fori,j=0, 1, 2, 3. Consequently, a spacetime will have a polycrystalline symmetry
of the & class if and only if its metric G = (g;,) satisfies

G =4,GA]. (1)

We now apply (1) to the four classes of polycrystalline symmetries identi-
fied by the 4,. It is an easy task to show that the most general forms of the metric
are given by, respectively,

8o 0 00 g 0 0 gus 800 o1 o1 8o1

0 000 0 00O o1 811 811 811
Gi=|l 0o 0001 G000 0 |/67 8o1 811 811 &11 |’

0 000 830 0 g3 o1 811 811 &1
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£00 0 0 0
|0 -lgptE) g 813
Gi= 10 g1z -(€ntgs) &3 )
0 g13 g3 -(g137823)

where the g;; are arbitrary functions of x*, i =0, 1, 2, 3.

According to general relativity, any spacetime is characterized by a metric
whose components satisfy the Einstein equations. It is well known that this metric
can have local singularities, i.e. points where the determinant of its matrix realiza-
tion vanishes. However, a metric whose determinant is identically zero must be
rejected because it would correspond to nothing having a physical sense. There-
fore, any spacetime of the first three classes of polycrystalline symmetries are
physically impossible. Only spacetimes with polycrystalline symmetry of the fourth
class have a chance to describe something real. By determining the general form of
the curvature tensor of spacetimes of this fourth class, we shall see in the next
section what kind of further restrictions are imposed on these spacetimes.

5. Curvature tensor for spacetimes of the fourth class :

Let us characterize the general form of the curvature tensor R of a spacetime
V, belonging to the fourth class of polycrystalline symmetry. The tensor R must be
invariant under the change of coordinate system described by the matrix 4. It
follows that the algebraically independent components of R, at any given point of
V4. will also be invariant under the same transformation. This property will then
hold for the ten independent components of the Weyl tensor and the ten indepen-
dent components of the Ricci tensor which form the twenty independent compo-
nents of the most general form of R.

To determine the general form of the Ricci tensor (R;) of a spacetime with
the fourth class of polycrystalline symmetry, one can observe that its matrix real-
ization has the same properties as those of the metric. Using the same arguments as
those applied to the metric, we thus obtain that the general form of (R;) directly
follows from G,, by simply replacing the non trivial g; with the corresponding R ;.
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A condition similar to (1) for the Weyl tensor C of a spacetime with the
fourth class of polycrystalline symmetry results from the Petrov matrix expres-
sion of'its ten algebraically independent components ([3], p. 176). To obtain this
expression, we use the following correspondence between pairs of tensor indices
of C and single Petrov indices :

Tensor indices : jj, kKl =23, 31, 12, 10, 20, 30;

3

Petrovindex: A,B= 1, 2, 3, 4, 5, 6;

The matrix of independent components of C takes a simpler form if, instead of the
fully covariant components C;;, one considers the mixed components Cy, <> C.
Here, we have Cy = G*“C -, where the matrix (G/€) = diag(L3,3, -I;..3), and I, 5 is
the 3 <3 identity matrix. The ten independent components of C are then given by

4 M N
(CB =
-N M
where M = (m;;) and N = (n;;) are symmetric traceless 3 x3 matrices.
To the coordinate transformation
(3921, 72, B = 4, 0 50, 22, 2%, (2)

corresponds a similarity transformation of the matrix C = (Cg ). Denoting with an
overbar the components of the Weyl tensor in the barred coordinate system
x,1=0,1, 2, 3, one obtains ([3], p. 178)

= = [2355 a’_‘j] c;;’*( X @), 6)

(mn,pd)<>Petrovy ox™ dx” oxk ox!

where the sum is taken only over the pairs mn and pg corresponding to Petrov
indices. If the Petrov indices 4, B, C, D correspond, respectively, to the pairs of
tensor indices ij, kl, mn, pq, then (3) is equivalent to

T4 =54CC3P, 4)
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where

g1 = ax‘ ox/

A, C=1,2,.,86,
c ax o’

and the §§ are the components of S, the inverse of the matrix S= (Sg), which in our
case is given by

011 0 L 1
S=2diag|(|1 0 1 |,|]1 O 1 {]. (5)
110 1 1 0
For the Weyl tensor of ¥, to be invariant under the coordinate transformation (2),
it is necessary that éﬁ = Cg ,A,B=1,2,..., 6. Equations (4) then becomes
A . ol G &D
Cp=ScCpSp
which is equivalent to
CS=SC. (6)

The substitution of (5) into (6) directly leads us to conclude that the general
form of the Weyl tensor for a spacetime with the fourth class of polycrystalline
symmetry is given by

M N
=) w5ty (7)
-N M
where
. my mi2 myy+myy+2my,
M= myy My, 2myy+ myp+ My
Myt myyt 2myy 2mytmygtmy  -(myyt+my)

and N has the same form as M with n; replacing #;;. In terms of CkJ , the expression

(7) means that all components of C may be wrltten using only six independent
components, which can be chosen to be C fg, Ci})’ & gg, C%i’, C;(l), Ci} .Italso leads to
the following non-standard symmetry relations.
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23 _ ~23 23 31 23 _ 423 23 31
C|2 C23+C3l+2¢3]’ C30 C10+C20+2C20’

3 m 28 23 31 31 .yt 23 31
C]2—2C23+C31+C31, C30 2C|0+C20+2C20’

2 _ 23 31 12 _ 23 31
C;=-C5-Cyp C30=-Cio~Coor

Note that the coordinate system used to express the above general form of the
Weyl tensor is not necessarily the same as the one used to give the correspon-
ding general forms of the metric and Ricci tensors. However, the set of components
we have identified as independent remain independent in all coordinate systems.

6. Conclusion and discussion :

We have shown that every spacetime with the fourth class of polycrystalline
symmetry has a metric and a Ricci tensor whose general form is essentially given
by G,. while the general form of its Weyl tensor is (7). Observe that knowing the
general forms of the metric and curvature tensor of this class of spacetimes does
not ensure the existence of such spacetimes. However, these general forms may be
used as starting points to check if any spacetime of this kind really exist: one has to
solve the corresponding Einstein equations to do that.

A more direct result of this paper applies to any spacetime whose spacelike
hypersurfaces have a polycrystalline structure of the first three classes. We have
shown that, according to general relativity, such spacetimes have no physical reality.
This conclusion also applies to the central part of a relatively large region of space
with such a crystalline structure. But the existence of any material body
requires a non-vanishing matter tensor, and thus of a non-vanishing curvature
tensor which in turn is determined by a metric whose components satisfy the Einstein
equations. This implies that no object can be created with spatial region having the
exact polycrystalline symmetry of any one of the first three classes. The very
existence of any material object requires that it be at best imperfectly symmetric in
the sense of the first three polycrystalline classes.

We shall now give two examples showing that the preceding conclusion
contradicts results from crystallography. Let us first observe that as soon as a
spacelike hypersurface has one crystalline structure of one of the first three classes
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of polycrystalline symmetry, then it automatically has the other crystalline struc-
ture of the same class. Thus, if a crystal has the spatial structure generated by the
repetition of the hexagonal unit cell, then it also has the rhombohedral lattice struc-
ture. The case just described will precisely be the one considered in our first
example. According to crystallography, the atoms of carbon in graphite form a crys-
talline structure made up from the hexagonal unit cell (see e.g. [4], p. 39). Thus, the
graphite will also have the rhombohedral crystalline structure. But we have seen
that general relativity forbids this kind of polycrystalline symmetry. As a second
example of contradiction between general relativity and crystallography, we
consider the numerous single crystals of random size forming a piece of metallic
copper. Crystallography tells us that these crystals result from the repetition of the
face-centred cubic unit cell ([4], p. 41). Therefore, these crystals also have a lattice
structure based on the face-centred orthorhombic unit cell. Once again, general
relativity does not permit such a polycrystalline symmetry.

As in [1], the application of discrete invariance properties to general relativity
has led us to contradictions between two successful theories used to describe our
world. Note that we did not show any contradiction between one of these theories and
reality itself. It is in fact possible that no physical object with a perfect polycrystal-
line symmetry of the first three classes really exists. In particular, it is possible that
the atoms of carbon of a piece of graphite form a spatial structure which is very close
to being a perfect hexagonal lattice without being it exactly. Our results just put
forward the fact that one cannot apply simultaneously general relativity and crystal-
lography to the same domain without intrinsic contradictions.
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