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Abstract:

Using chest X-rays to find lung cancer early and correctly is very important
for better patient results. Problems with traditional methods include bones and
soft tissues rubbing against each other, which can make it hard to see important
traits in lung cancer detection. This study looks at how to improve chest X-ray
analysis by combining deep learning techniques with lung segmentation and
bone shadow removal methods. By using these methods, we hope to get rid of
the noise and useless data in chest X-rays so that we can focus more clearly on
the lung areas. For this study, we use a Convolutional Neural Network (CNN)
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framework designed for medical picture analysis along with U-Net-based
methods for lung segmentation. This division process separates the lung areas
from the body parts around them. Also, a bone shadow elimination method is
used to get rid of even more noise from ribs and clavicle shadows. This keeps
the model from being side tracked by features that aren 't important. The study's
dataset is made up of a lot of labelled chest X-rays of people who have been
diagnosed with lung cancer and people who are healthy. Our tests show that
using these preparation techniques along with deep learning makes lung cancer
diagnosis much more accurate, even better than using traditional chest X-ray
analysis methods. Both sensitivity and specificity have gotten a lot better, which
suggests that the suggested method could help doctors make better diagnoses.
This way may also help Al-driven tests become more common in clinical practice,
especially in places where CT scans are hard to get to.
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1. Introduction:

The number of people with lung cancer is very high, especially in China, where
more than half of adult men are affected by it. The effects of the disease are made
worse by dirty air. Lung cancer is very common in China and around the world. Early
screening is the current answer, and it often leads to good results at a low cost. Every-
one in the world agrees that screening, especially with computed tomography, is a
good way to lower the death rate from lung cancer [1]. But it doesn’t get used very
often because it’s expensive and hard to get in most parts of the world. At this point,
chest X-ray (CXR) imaging is the most common and easy-to-get screening tool for
checking on health and finding lung diseases like cancer, asthma, tuberculosis, and
more. But using CXRs to find signs of these diseases is a very difficult process that
needs the help of experienced doctors. Long hand analysis and discovery times for
lung cancer delay the use of CXRs, and there aren’t enough experts to do the work.
For example, more than 600,000 cases of lung cancer are identified every year in
China, but only 1.4 billion people don’t have access to qualified doctors. Recently,
big steps forward in computing, especially computing on general purpose Graphic
Processing Units (GPUs) [2, 3], machine learning, and especially deep learning [4]
for picture recognition have had a big impact. For example, the CheXNet model was
just released and can automatically find pneumonia on chest X-rays at a level higher
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than what actual doctors can do [5]. That’s why any automatic tools and machine learning
methods that help find, classify, and divide up worrisome areas (like sores, lumps,
etc.) more quickly and accurately are so important for the next diagnosis. The main
point of this study is to show how well lung segmentation and bone shadow exclusion
work for analysing 2D CXRs using a deep learning method that can help doctors find
areas that look fishy in lung cancer patients.

2. Related Work:

Lung cancer spots that look worrisome can now be found in a number of
different ways. Radiologists can make more accurate diagnoses with Computed
Tomography (CT) because it is very good at finding tumours that are hard to see.
Most people think of X-rays as an old way to do medical imaging, but digital tools
and machine learning have made them useful again for detection. When it comes
to X-ray scans, they are especially good at finding lung tumours and can pick up
more types of heart and chest diseases. Machine learning and GPU computing study
for medical data handling is making fast progress, which helps the results. Few
months ago, machine learning and, more specifically, deep learning methods showed
some hopeful results in the area of lung disease diagnosis. Since this is the case,
the present GPU-based software can handle hundreds of high-resolution medical
pictures instantly. Researchers can train, test, and fine-tune their new methods
using open datasets that contain CT and CXR pictures. As suggested by the Japa-
nese Society of Radiological Technology (JSRT), letting study groups around the
world use a picture database with and without lung cancer tumours is a good way to
do this [6]. Other study and medical institutions backed this project. There are more
than 244000 images in the Lung Image Database Consortium’s (LIDC) database
that were taken by different imaging methods (Computed Tomography, or CT),
on more than 1000 patients. The images have an in-plane resolution of 512x512
pixels and a range of 0.542-0.750 mm [7]. For more study on computer-assisted
detection of lung diseases, especially pulmonary TB [8, 9], the U.S. National
Library of Medicine has made two sets of CXRs available to the public. In Mary-
land, USA, the Department of Health and Human Services in Montgomery County
worked with the Montgomery County (MC) dataset to be created. From the Shenzhen
No. 3 People’s Hospital in Shenzhen, China, we got the Shenzhen Hospital dataset
(SH). In both sets, there are both normal and abnormal chests X-rays with signs
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of tuberculosis, along with the radiologist’s notes that go with them. The Chest
X-ray14 dataset has over 100,000 frontal-view X-ray pictures of people with 14
different lung diseases. It is the biggest chest X-ray collection that is open to the
public [10]. It was learnt on the Chest X-ray14 dataset [5], which is where the 121-
layer convolutional neural network CheXNet received its training. Investigators try
to leave out areas that aren’t related to lungs or other areas of interest in order to
make more accurate guesses. Cutting up normal CXRs into left and right lung fields
is part of this job. Recent suggestions include active shape models, active look
models, and a multi-resolution pixel classification method for different ways to
divide things into groups. Two human witnesses carefully separated all the items in
the JSRT database [ 11] so that the methods could be tried. It’s still hard to separate
the lung fields in CXR and MRI pictures [12], even though many new segmentation
methods have been suggested for their use in medical imaging. The removal of
body parts that cover the lung, like the ribs and clavicles, is another potential way to
improve the forecast. This bone shadow removed (BSE) form of the JSRT dataset
(BSE-JSRT) was made available to the medical imaging community by the Chest
Diagnostic System Research Group in Budapest, Hungary [13]. To get rid of rib
shadows in CXRs, another study used a two-step algorithm. First, the ribs were
defined using a new hybrid self-template method. Next, the defined ribs were
suppressed using an unsupervised regression model that takes into account changes
in the bone’s proximal thickness along the vertical axis [14]. For the datasets used
in this work, more information is given below.

3. Data and Methodology:
3.1 Data:

The segmentation methods listed below were used on the JSRT and BSE-
JSRT datasets. As shown in Fig. 1a, the JSRT image collection has 247 pictures,
including 154 cases with lung tumours and 93 cases without them [6]. Fig. 1b
shows 247 pictures from the JSRT dataset that do not have the collarbone and rib
shadows erased by the special methods [13]. The work’s purpose was to see what
the difference was between using deep learning on the original JSRT dataset and the
BSE-JSRT dataset, which is the same JSRT dataset but doesn’t have the collarbone
and rib shadows. The UNet-based Convolutional Neural Network (CNN) was used
to separate the left and right lung areas from the heart and other parts of normal
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cardiograms. Its CNN architecture makes image segmentation fast and accurate,
and it showed high accuracy on several challenges, such as tracking cells from
transmitted light microscopy [15], finding cavities in bitewing radiographs, and
segmenting neuronal structures in electron microscopic stacks [16]. For example,
this method was recently used successfully to separate lungs on CXRs from the
MC and JSRT datasets using masks that were made by hand [16]. Morethan that, the
study wanted to see what happened when the lungs were separated in order to use
the deep learning method on the original JSRT dataset after separation and the same
BSE-JSRT dataset after separation.

Fig. 1(a) Fig. 1(b)

Fig. 1: This is an example of the original picture (2048x2048 pixels) from the
JSRT dataset [6] with the cancer tumour (a), the image that goes with it from the
BSE-JSRT dataset [ 13] without the bones (b), and the meta-information that goes
with it (c). The point and circle show where the nodule is located and the area it
covers (a).

3.2 Methodology:

We chose a simple training model with a short running time so that we could
study the effects of segmentation and bone removal only in a simplified configu-
ration. We didn’t focus on getting the best accuracy and least amount of loss, which
is something that will be, looked into in more detail in future works. The original,
divided, and bone-removed datasets, along with a simple and standard CNN model
with only 7 convolution 2D layers, were used to train the model. After many tests
with images of different sizes and batches in “single-CPU” (1 core of Intel i7),
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“multi-CPU” (8 cores of Intel i7), and “GPU” (Graphics Processing Unit - NVIDIA
Tesla K40c” modes, the running time (Fig. 2) and speedup analysis (Fig. 3) were
done. For the largest picture sizes (1024x1024) and a batch size of 8 photos, the
results showed a speedup of up to 9.5 times in GPU mode and 3.0 times in multi-
CPU mode. The data helped us figure out what kinds of real-life situations would
be good for testing the viability of segmentation and bone removal methods.
Finally, the 256x256 images were used for the previous training and are reported
here. The more complex models are now being trained on the larger pictures, which
will be reported elsewhere [17].
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Fig. 3: Multiple CPU and GPU modes are faster than single CPU mode
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4. Results:

Here, we show the results of how bone removal and lung segmentation
affected training for the original JSRT dataset, the BSE-JSRT dataset (which is the
same JSRT dataset but without clavicle and rib shadows, the original JSRT dataset
after segmentation, and the same BSE-JSRT dataset after segmentation.

4.1 Segmentation:

This segmentation stage was applied to the original images from JSRT dataset
(dataset #01, Fig. 4a) to obtain their segmented versions (dataset #03, Fig. 4c) and
consisted in the following stages: training the UNet-based CNN for lung segmen-
tation (search of lungs borders) on MC dataset with manually prepared masks (lung
borders), predicting the lung borders in the shape of black-and-white lung masks
(Fig. 4b) by means of the trained UNet-based CNN for each of original images
from JSRT dataset (Fig. 4a), cutting the regions of interest (right and left lungs)
(Fig. 4c) from their original images (Fig. 4a)

JAA

4(a) 4(b) 4(c)

Fig. 4: Example of the original image (inversed version of Fig.1a) (a), the corres-
pondent lung mask predicted by machine learning approach (b), and its segmented
version (C).

4.2 Training and Validation:

The basic CNN was trained in GPU mode using an NVIDIA Tesla K40c card
through the Tensor Flow machine learning framework, focussing on four datasets:
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the original JSRT dataset, the original BSE-JSRT dataset, which is the same as the
JSRT dataset but excludes clavicle and rib, shadows the JSRT dataset post-segmen-
tation, and the BSE-JSRT dataset post-segmentation. The prior findings (Fig. 5)
clearly illustrate the significant disparity in training and validation outcomes
between the unprocessed data, namely the original JSRT, and any of the pre-pro-
cessed datasets. Although the original JSRT dataset 01 (red line in Fig. 5) exhibits
no evidence of training due to its low image resolution and minimal nodule size,
the pre-processed datasets (orange, dark blue, and blue lines in Fig. 5) display a
propensity for training, achieving high training accuracy and low loss in the later
stages of this simplified configuration.
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Fig. S: There are four sets of data: the original images (line 01), the images without
bones (line 02), the segmented images (line 03), and the segmented images without
bones (line 04). The data shows the training accuracy (a), the validation accuracy (b),
the training loss (c), and the validation loss (d).

5. Discussion and Conclusion:

The outcomes show how useful pre-processing methods like bone shadow



ACCST Research Journal [Vol. XXII (1), January 24] 47

removal and segmentation are, especially when training in a very simple setup. The
overtraining effect, which shows lower validation accuracy and higher validation
loss compared to training accuracy and loss, is thought to be connected to training
to artefacts like the shape of the lungs and the pattern of the edges of the lungs.
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Fig. 6: The following are the metrics for the pictures without bones (line 02), the
segmented images (line 03), and the segmented images without bones (line 04):
training accuracy (a), validation accuracy (b), training loss (¢), and validation loss

().

The investigated datasets could be made bigger: the image size could go from
the current 256x256 values to 1024x1024 (Chest X-Ray dataset) and 2048x2048
(JSRT dataset); the number of images could go from the current 247 (JSRT and
BSE-JSRT datasets) to >1000 (MC dataset) and >100,000 (Chest X-Ray dataset);
and the data could be made bigger in terms of lossy and lossless transformations
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[17]. A lot more progress can be made by combining many similar datasets from
many hospitals around the world. This is in line with open science data, amateur
data collection, data processing, and computing [19]. In the end, the results show
that the pre-processing methods we looked at are very useful and efficient, even in
the simplest setup. It’s important to note that the pre-processed dataset without
bones has much better accuracy and loss results than the other pre-processed
datasets after lung segmentation. So, the extra space for development could be
linked to better pre-processing algorithms for: lung segmentation using larger
datasets with masks; bone shadow elimination using more complex semantic
segmentation techniques applied not only to lungs and body parts outside of them
(heart, arms, etc.); as well as for ribs and clavicles inside the lungs; and training
itself by making the deep learning network bigger and more complicated, from its
current small size of 7 layers to >100 layers like in the most accurate networks
like CheXNet, which is used to diagnose other diseases [5]. Work is being done
right now to train the more involved models on the bigger pictures, and the results
will be shared elsewhere [17]. This is why it’s important to think about how to fine-
tune datasets and deep learning models, as this can have a big impact on how well
the model works [20-22].
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