The Mathematics Education Volume - LV, No. 1, March 2021

ISSN 0047-6269

Refereed and Peer-Reviewed Quarterly Journal Journal website: www.internationaljournalsiwan.com

The Use of Differential Equations to Solutions in Game Theory

by Ashok Kumar, Assistant Teacher, Higher Secondary School, Bhithi - 841411, Shahabuddin, Baniyapur, Saran E-mail: ashokkumar8111980@gmail.com

Abstract:

In this paper, the use of differential equation to solution in Game theory. Dockner, E; Jorgenson, S; Vanlong N; Sorger, G. "Differential games in Economics and management science" [1]. An approach of this problem concentrates on the use of discrete transfer schemes to study how players in the game might arrive at a desirable outcome and some interesting theorems.

Keywords: Differential equations and centroids, analytical geometry, system of differential equations, normal vector. Game theory.

1. Introduction:

Differential Equations and Centroids:

Definitions:

Let E^n be Euclidean *n*-space and $\{a^i\}$ be a fixed set of unit vectors in E^n where

$$i = 1, 2, 3,, m$$
.

The following functions are defined as:

$$h^{i}(x, b) = \langle a^{i}. x \rangle + b_{i}$$

Where $x \in E^n$;

$$b = \{b_1, b_2, b_3,, b_m\} \in E^m$$

And <.> is the standard inner product on E^n .

We also define the following:

$$P^{i}(b) = \{x | h^{i}(x, b) = 0\}$$

And

$$Cr(b) = \{x | h^i(x, b) \le 0\}$$

Clearly, the above $p^{i}(b)$ is a hyperplane in E^{n} .

If $Cr(b) \neq \emptyset$ then it is possibly an unbounded polyhedron in E^n since it is the intersection of half-spaces.

From analytic geometry, the following results are obvious:

- (i) The normal (perpendicular) Euclidean distance from any point $x \in E^n$ to $p^i(b)$ is $|h^i(x, b)|$ (absolute value).
- (ii) The normal vector from any point $x \in E^n$ to $p^i(b)$ is $h^i(x, b)$ a^i

Let
$$E_{+}^{m} = \{k \in \mathbb{R}^{m} / K_{i} > 0, i = 1, 2, 3, \dots, m\}$$

We consider the following system of differential equations:

$$\frac{dx}{dt} = \dot{x} = B(x, b, k) = -\frac{m}{2} K_i [h^i(x, b)]^+ a^i$$

Where $[.]^+ = \max\{., 0\}.$

Clearly the above B(x, b, k) is continuous. Hence the following result follows:

For any $b \in E^m$, $K \in E_+^m$, $x^0 \in E^n$, there exists a unique solution $r(t, x_0, b, k)$ to (1), continuous in $t \in (-\infty, \infty)$ and such that

$$r(0, x_0, b, k) = x_0$$

Geometrically, the following half-space $\{x | h(x, b > 0)\}$ can be imagined to be the "wrong side" of hyperplane $p^i(b)$. All other points will constitute the "right side". At any point $x \in E^n$, consider all those i such that x is on the wrong side of $p^i(b)$.

We call such $p^i(b)$ an "offended" hyperplane. We take a positive linear combination of the normal vectors from x to the offended hyperplanes to obtain

$$-Z_{i=1}^{m} K_{i} [h^{i}(x,b)]^{+} a^{i}$$

Thus the solutions of system (1a) tend to move toward the offended hyperplanes as t increases, ignoring the others. So it might be expected that, along solutions the distance to offended hyperplanes would tend decrease.

2. Centroids Definition:

With the help of above $\{a^i\}$, b and k, we define the set of k-centroids of b with vectors $\{a^i\}$ denoted by C(b, k) as follows:

$$C(b, k) = \{x \in E^n / \phi(x, b, k) = y \in E^n / \phi(y, b, k)\}$$

$$\phi(y, b, k) = \sum_{i=1}^{m} K_i([h^i(y, b)]^+)^2.$$

We observe that

- (i) If $Cr(b) \neq \emptyset$, then Cr(b) = C(b, k).
- (ii) C(b, k) is independent of k.

In general however, C(b, k) is not independent of k.

Theorem 1 : For any $b \in E^m$ and $k \in E_+^m$, $C(b, k) \neq \emptyset$.

Proof: One can observe that the problem

 $\inf_{Y \in E^n} (y, b, k)$ can be written

$$\inf_{\substack{Z \in E^m \\ Y \in E^n}} \sum_{i=1}^m k_i \ Z_i^2$$

subject to $Z_i \ge 0$

$$Z_i \ge h^i(y, b), \quad i = 1, 2, 3, \dots, m.$$

The objective function of the rewritten problem is a convex quadratic function, bounded below and the constaints define a nonempty polyhedral convex set.

Since $[.]^+$ is a convex, non-negative and non-decreasing function on R and $(.)^2$ is convex while $h_i(x, b)$ is an affine function of x, it follows that $\phi(x, b, k)$ is also a convex function in x. Also we observe $([.]^+)^2$ is continuously differentiable with

$$\frac{d}{ds}([s]^+)^2 = 2[s]^+.$$

Thus, $\phi(x, b, k)$ is continuously differentiable on E^n .

Let X = f(x) be any system of differential equation on E^n . A^u critical point P^n of the system is any point P^n such that P^n of the system is any point P^n such that P^n of the system is any point P^n such that P^n of the system is any point P^n such that P^n of the system is any point P^n such that P^n is a system of differential equation on P^n .

Here we see that if ϕ is convex and differentiable continuously then the following holds :

 X_n is a k-centroid of b if and only if $\nabla \phi(x, b, k)$ such that $x_0 = 0$, where ∇ is the gradient operator with respect to x.

Theorem 2: x_0 is a k-centroid of b if and only if x_0 is a critical point of system (1.a).

Proof: Since,
$$\frac{\partial}{\partial x_i} (\delta(x, b, k)) = 2 \sum_{i=1}^{m} k_i [\langle a^i, x \rangle + b_i]^+ a_j^i$$

Thus, $\nabla \phi(x, b, k) = -2B(x, b, k)$.

So, x_0 is a critical point if and only if B(x, b, k) = 0

i.e. iff $\nabla \phi(x, b, k)$ such that $x_n = 0$

i.e. iff x_n is a k-centroid of b.

We non-establish some properties of C(b, k). We observe that if $Cr(b) \neq \emptyset$, then the set of k-centroids of b is a polyhedron. This is true even if $Cr(b) = \emptyset$.

References:

- 1. Dockner, E; Jorgenson, S; Vanlong N. and Sorger, G. (eds.) (2000): "Differential games in economics and management science", Cambridge University Press.
- 2. Beltman, R. (1957): Dynamic Programming, Princeton, N.J. Princeton University Press.
- 3. Billera, L. (1972): Math. Programming, Vol. 1.
- 4. Friedman, James (1990): "Game Theory with Applications to economics", 2nd ed., Oxford University Press.
- 5. D. Fundenbeg and Levine (1998): "The Theory of Learning in Games", MIT Press.