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Abstract:

This paper explores idempotent and nilpotent operators in bicomplex
spaces, focusing on their properties and behavior. We define idempotent and
nilpotent matrices in this framework and derive related results. Several theorems
are presented to establish conditions for the existence and behavior of bicomplex
idempotent and nilpotent operators and bicomplex idempotent matrices.
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1. Introduction:

The theory of bicomplex numbers is a central focus of contemporary math-
ematical research, with significant progress in recent years. Numerous authors (see
[1,9,10, 11, 12]) have advanced the field, exploring diverse perspectives to elucidate
their properties and establish a consistent framework for the multivariate theory of
complex numbers. Recently, researchers studying matrices and linear operators (see
[2, 3,4, 5, 8]) over various algebraic systems have made extensive contributions
to mathematics. Bicomplex numbers, introduced by Segre, extend the concept of
complex numbers and form a commutative ring with zero divisors. Their properties
find applications in functional analysis, quantum mechanics, and signal processing.

2. Preliminaries and Notations:

This section provides an introduction to bicomplex numbers and explores
their key properties. It highlights several essential findings related to bicomplex
numbers.

Bicomplex numbers: Bicomplex numbers are an extension of complex numbers,
defined as:

&= uy +iuy+ by T iyiguy,
where uy, u,, u; and u, are real numbers with i,i, = ii|, i12 = i22 =-1.

The collection of all bicomplex numbers is represented by C, and is referred
to as the bicomplex space. For simplicity, C, stands for the set of complex numbers,
and C, indicates the set of real numbers. The bicomplex space C, can be charac-
terized in two distinct ways:
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The set C, contains zero-divisors, which makes it an algebra over C, rather
than a field. Within C,, there are exactly four idempotent elements: 0, 1, ¢, e,,
where e, and e, are two nontrivial idempotent elements, specified as follows:

1+i,i 1-i,i
2

These elements stand out due to their orthogonality (e,e, = e,e; = 0) and
the fact that they add up to 1 (e; + e, =1).

(1) Also,ef=e;andej=e,;neN.
Idempotent Representation and Equality Condition of Bicomplex Numbers:

Every bicomplex number & has unique idempotent representation as complex
combination of e, and e, as follows

E=z,tiyzy=(z;-11zp)e; +(z; T 12,)e,

The complex numbers (z, - i,z,) and (z, +i,z,) are called idempotent com-
ponent of €, and are denoted by &~ and & respectively (cf. Srivastava [11]). Thus,
the bicomplex number can be written as

&Z@_el+§+ez.
Furthermore, for two bicomplex numbers &, n € C,.
E=nifandonlyifé =n-, £"=n*.

That is, bicomplex numbers are equal if and only if their corresponding
idempotent components coincide.

Definition 2.1: ([5], [ Definition 1.4]): A bicomplex matrix of order m x n is written
as A = [E;],xn» € € C, with each element §;; € C,. The collection of all such
bicomplex matrices is denoted C5"", defined as:

@) Cyr={[g:&;€Cpi=1,2,.m, j=1,2..n}

With usual matrix addition and scalar multiplication, the set C7’ “ forms a
vector space over the field C,. The dimension of C5"" over C, is immediately
given by
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(3)  dim (C5"")(C)) =2mn.

Furthermore, each bicomplex matrices 4 uniquely decomposes as
A=l €CY “ can be decomposed uniquely as

(4) A=e A4 +e,d,
where 4 = [&;]an, A= [El}]mxn are complex matrices.

Remark 2.2: Analogous to the concept of equality of two bicomplex numbers,
two bicomplex matrices A=e, A" +e,A",B=e,B +e,B € C}"" are equal ifand
only if their idempotent component matrices are equal. That is,

(5) A=Bifandonlyif4 =B and4 =B,

and the product, sum of two bicomplex matrices and bicomplex scalar product are
decomposed as follows:

(6) A.B=e(d .B)+ey(d".B").
(7)  (A+B)=e(A4 +B)+ey(d +B").

(8) E&.Ad=e (84 ) +ey(EAT); ¥E€C,.

Remark 2.3: ([4], [Remark 3.1]): To streamline notation, denote the set of all
C,-linear maps from Cj to C{" by L|", and set of all C,-linear maps from CJ to
C7' by L3". Both are vector spaces over C,, with dimensions:

(9)  dim(L{™)=mn and dim(L3") =dim C - diim C5'=2n - 2m = 4mn.

Since C, is a field, L] = C"". However C, is a not field, L) £ CJ"™".
Instead, C5"" is a proper subspace of L), leading to the next definition.

Definition 2.4: ([4], [Definitions 3.2, 4.1]): For any given T, T, € L™, we can
define a map 7': C; — C7' by the following rule:

T(&1, Epsers E) =t ey - Tl(&ja @5:---: @;) tey- TZ(EJ, ig,---, @D-

Clearly T is a C,-linear map. T can also be represented by e, T +e,7,. Thus
the set of all such linear maps is the idempotent product L{™" x, L{", i.e., we have
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(10) L™ x L{"={e;T,+e, T, e L}": T|, T, e L{"}.

For convenience, the set of all such type of 7= e, T} + e,T, : C; — C)
linear operators is denoted by L x, L{. The idempotent product L™ x, L{™ is a
subspace of L}" over the field C,. This indicates directly that L™ x, L{™ has
dimension 2mn. That is

(1) dim(L™ x, L™ (C ) =2mn.

Since C7"" and L™ x, L{™ have same dimensions over C,, they are
isomorphic. Hence, the matrix expression for 7= e T} + e, T, is defined using the
ordered bases B, for C{, and B, for CY' as follows:

B B B
(12) [Tl =te)[T\]p, + ey [T]p,.

B B
Here, [T 1]31 and [T 2]31 are matrices of 7| and T, for bases B, and B,. If
C{= CY', the matrix representatlon of T=e, T, + e, T, with respect to basis B for
C" is simplified to [T'] 5 from [T ]B Thus, it follows:

(13) [TIz=e|lT\]pt e Th]s.

Proposition 2.5: ([4], [Proposition 3.3]): Let 7, S € L™ x, L] be any elements
such that 7= elTl + 62T2 and S= elSI + €2S2. Then, we have

(1)  T+S=e|(T)+8) T e, +5).
(2) oI =e|(al)) tey(al,); oaeCy.

Theorem 2.6: ([5], [Theorem 2.7]): A linear operator 7=e,T; +e,T, € L} %, L] is
singular if and only if either 7 is singular or 7, is singular.

Previously, [4] introduced the “Idempotent method” for matrix representa-
tion a linear map of the form 7'=¢, T, + e,T, : C5 — CJ'. This method provides a
systematic approach to establishing a one-to-one correspondence between
bicomplex matrices 4 = [&;],,x,, and the linear operator’s 7= e, T + e, T, on finite
dimensional vector space C5. This method helps analyze specific classes of
matrices and operators in bicomplex spaces, offering a valuable approach for
further study. For a detailed discussion on the Idempotent Method, see [4]. With
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this foundation in place, we examine idempotent and nilpotent operators and
idempotent and nilpotent matrices in bicomplex spaces,which offer unique insights
into the structure of bicomplex linear algebra.

Theorem 2.7: ([4], [Theorem 3.4]): Let T=¢e| T + e,T5, S = e, S| + €,5, be any two
elements of L{" x, L{"™. Then, we have

(1) T=0,ifandonlyif7,=0,7,=0.
(2) T=S,ifandonlyif 7, =8, T, =S,.
(B) SoT=e(S)oT))+eyS, o T), wherever composition defined.

Anjali [4], stated Theorem 2.7 and we build upon this by extending the
concept to the case where 7" = 0 v n € N; accordingly, we propose the following
theorems.

Theorem 2.8: Let 7=, T + e,T, be a elements of L™ x, L{™. Then,

Tn:el(TloTlOTI...TI)+€2(T20T20T2...T2)

n times n times

Or T'=e T +e,0,); ¥vneN

Proof: To prove that 7" = ¢,T| + e,T,, for all neNN, using the principle of
mathematical induction.

Case 1: Forn=1, we have
T'=e,T| +e,T,

Clearly, the statement holds.

Assume that the property holds for n = £, that is
Th=e, T+ e,T%

We need to show that it holds for n =k + 1, that is

1 k+1 k+2
""" =eI| +epT,
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Since
=1k T
We substitute 7' k with its assumed form:
T = [e,T + e, T4 o [e, T+ e, T,
= el(Tl o Tl) + 62(T2 o Tz) {by Theorem 27}
= [el (Tl OTl OTITI) +62(T20T20T2T2)]

k+1 times k+1 times

k+1 k+1
—elTl +€2T1 .

Using the principle of mathematical induction, the result holds for every
natural number 7, 1.€.

Tn:elTln'i'ezTZn
This proof holds for any linear operator 7' € L} %, L{.

Thus the theorem is proved.

Theorem 2.9: Let T=¢e, T + e,T), S = e,S| + e,5, be any two elements of L{" x
<L1". Then, we have

(1) Tk=0,ifandonlyif T¥=0, T4 =0.
(2) T*=S* ifandonlyif 7% =S¥ 7%= 5%,

Proof: (1) We need to prove that for any element T = e, T} + e,T, e L{™ X
L, TH= 0 if and only if 75 =0, T4 =0.

Suppose,
TF=0

= elTlf+ezT§=O {by Theorem 2.8}
= T{CZO&TQCZO {as T*is L.T. & by part (1) of Theorem 2.7}.

(2) We need to prove that for any two elements T= elT 1 te T, S=eS|te)S, e
L™ x,L}™, the equality 7" =S¥ < T" = 8%, T5 = 8% for some ke N.
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Suppose,
Tk =Sk for some k e N

= elTlf + eZTg = elSlf + eZSg, forsome ke N  {by Theorem 2.8}

= T{CZ S{( and ng Sg, for some ke N {as 7%, S¥are L.T. & by part (2)
of Theorem 2.7}.

Thus the theorem is proved.
3. Bicomplex Nilpotent Operator and Nilpotent Matrices:

In this section, we define bicomplex nilpotent operators and explore related
results. For convenience, we introduce the terms C,-nilpotent operators and C,-
nilpotent matrices to specifically refer to nilpotent operators and matrices in
bicomplex spaces, respectively.

Definition 3.1: C,-nilpotent operator: A linear operator 7' € L™ x, L™ is said
to be a C,-nilpotent operator if 7" = 0 for some positive integer n. The smallest
such 7 is called the index of 7.

Definition 3.2: C,-nilpotent matrix: A matrix 4 = e, A~ + e,A" € C5 " is said to
be a C,-nilpotent matrix if there exists a positive integer » such that 4” = 0. The
smallest such 7 is called the index matrix A.

Theorem 3.3: Alinear operator T=e, T, +e,T, € L| %, L} is a C,-nilpotent opera-
tor if and only if 7 and 7, are nilpotent operators.

Proof: Suppose 7 is a nilpotent operator. Then, there exists a natural number k
such that

Tk: 0or (elTl + esz)k: 0
= T]f=0and T§=O {by Theorem 2.9}
= T, and T, will be nilpotent operators.  {by Definition 3.2}

Conversely: Let T, T, € L™ be two nilpotent operators. Then there exists natural
numbers ky, k, such that

T\1=0and Ti2=0.



The Mathematics Education [Vol. LIX (2), June 25] 9

This gives that
(14) T'=0and T,=0 v 1eN; 1>k, k.
From Theorem 2.8 and let /= max(k,, k,), then
(T) = ()T, + e,T,)’
=ey(T)) + ex(T)'
=e,0+e,0 {as /> ky, k, and by Equation 14}
=0.

Thus, we have a natural number / such that T '=0. Hence, T'will be a nil-
potent operator, as required. Thus, the proof of the theorem is complete.

Theorem 3.4: Let 7= e, T + e,T, € L] X, L{ be a C,-nilpotent operator and let
B, be the order+ed basis for C{ such that [T)]B, =4 ,and [T,]p, = A" ifand only if
A=e A +e,4" 1s Cy-nilpotent matrix.

Proof: Suppose T=T, € L{ X, L} is a C,-nilpotent operator. We use Definition 2.4
and Theorem 3.3, we have

T, and T are nilpotent operators
< 3ny,n, e Nsuchthat 7{'=0and 752 =0

< I basis B, for C{ such that ([Tl]ggl)n1 =0 and ([Tz]ggl)n2 = 0 are nilpotent
matrices

< e([Th]18)" +ex([Th]) " =e (A7) + ex4)'=0
& ([eT) +e;Th]p,) =A4"=0 {wel=e,&e) =eyneNj

Thus 4 = [e| T} + e,T5]3, is a C,-nilpotent matrix. Thus the proof of the
theorem is complete.

Theorem 3.5: Let T=¢,T| +e,T, € L] X, L] be a C,-nilpotent operator. Then T
and T, are singular.
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Proof: Suppose T is a C,-nilpotent operator. Then, using ([6], Theorem 3.2.4),
([7], Theorem 1, p.n. 590), and Theorem 3.3, we have

T, and T are nilpotent operator
=  Alleigenvalue of 7 and T, are zero
= (T - 0) 1s singular and (7, - 0/) is singular
= T, and T, are singular.

Hence T and T, are singular, as required. Thus, the proof of the theorem is
complete.

The converse of Theorem 3.4 is not true, as seen in the given example.

Example 3.6: Suppose T(z;, 25, z3) = (23 + 25, 23, 0) and T (wy, wy, w3) = (wy, 0,
wjy). It is easy to see that 7' and T, are singular operators. For 7', we find 7} =
T\(T\(2), 23, 23)) = Ty(23 + 23, 23, 0) = (23 + 0, 0, 0), and T} = Ty(T} (2, 23, 23)) =
Ti(z3 +0,0,0)=(0, 0, 0). So, T13 = 0, the operator 7 is nilpotent with index 3
because Tf =0, but le # 0. On the other hand, for all n > 1 we have T = T, # 0,
which shows that 7', is not nilpotent. Hence, by Theorem 3.3, it follows that 7'is not
nilpotent.

Theorem 3.7: Let 7= e,T| + e,T, € L{ %, L] be a C,-nilpotent operator and let
T, and T), be two nilpotent operators of index k; and k, respectively. Then T'is a
C,-nilpotent operator of the index max(k, k,) and vice versa.

Proof: Suppose 7 and T are nilpotent operators of index k; and &, respectively.
Then

Ti1=0, 7" 2 0and Ti2=0, 752" 20.

Case 1: If k) <k,. Then, we have

™2 =0

Now,
ky _ ky
=\ T2+ e, Ty
= 0. fas T2=0and T2 =0}
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and Tkz-l =(€1T1 +62T2)k2-1 :elTllcz-l +€2T§2-1—¢O
{as T§2'1¢ 0 and by Theorem 2.8}
Therefore T'1s a C,-nilpotent operator of index k,.

Case 2: If k, < k;.Then we can easily prove that as previous 7' is a C,-nilpotent
operator of index k. Hence T will be the C,-nilpotent operator of index max

(ky, k).
Conversely: Suppose T'is a C,-nilpotent operator of index & such that

Now, using Theorem 3.3 we have 7| and 7, are nilpotent. There exist natural
numbers k; and k, such that

=0, 75" 2 0and TR2=0, 722" 20.

Case 1: If k; <k,. Then

(T1)k2 =0
Thus we have,
k k k
T2 =e|(T))? +ex(T)*=0
and

ky

T = o (1) + ey(1)? 20 (as TA2" % 0)

Therefore 7'1s a C,-nilpotent operator of index k.

Case 2: If k, < k. Then we have

(1" =0

Thus T = e (T + ey(T) 1 =0

and

T = (1) 4 o)1) 20 (as T 2 0).

Therefore T'1s a C,-nilpotent operator of index ;.
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Since if ky <k, and k, < k{, then T'is a C,-nilpotent operator of index k, and

k, respectively.

Hence T'is a C,-nilpotent operator of index Max(ky, k,) = k.

The following Corollary 3.8 is immediate consequence of Theorem 3.7.

Corollary 3.8: Suppose T=e, T + e,T, € L %, L{ is a C,-nilpotent operator of
index m. Then at least one nilpotent operator 7 and 7, will be of index m.

4. Bicomplex Idempotent Operator and Idempotent Matrices:

In this section, we define bicomplex idempotent operators and matrices and
explore their related results. For convenience, we introduce the terms C,-idempo-
tent operators and C,-idempotent matrices to refer specifically to idempotent
operators and matrices in bicomplex spaces.

Definition 4.1: C,-idempotent operator: A linear operator 7'=e,T| + e,T, € L]
x, L1 is said to be C,-idempotent operator or bicomplex idempotent operator if
T*=T.

Definition 4.2: C,-idempotent Matrices: A Matrix 4 = ¢, 4" + e,d" eC5™" is
said to be C,-1dempotent matrix or bicomplex idempotent matrix if A*=4.

Theorem 4.3: A linear operator T € L{ %, L{ is a C,-idempotent if and only if 7|
and 7, are the idempotent linear operator.

Proof: Suppose I'=e,T| +e,T, € L] X, L] is a C,-idempotent linear operator. We
use Definition 4.1 and Theorem 2.7 throughout this proof.

T2=T

212 4 272+ 2e,e, T\ T, =, T, + e, T

el TelyTeeepliy=elymel

Ti+eTs+e T +ey T, { ej.ey=eye,=0,¢1=¢, & &5 =
eI +eT5te T +eT, " e.ep=epe ,e1=e & e, ey}

Ti=T,andT5=T, {-T?isL.T.& by part(2)of Theorem 2.7}

g ¢ 0 ¢

T, and T, will be idempotent operators,

as required. Thus the proof of the theorem is complete.
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The following properties of C,-idempotent operators provide fundamental
insight into their structure, composition, and algebraic significance.

Properties: Let T=e,T| +e,T,,S=e,S; * e,5, be any two elements of L} x, LY.
Suppose S, T'are C,-idempotent operators. Then we have:

(1) I-TisaC,-idempotent operatorifand onlyif/-7},/- T, are idempotent
operator. Where /=¢e [~ + e,/ "is the identity operator.

(2) SoTisaC,-idempotent operators if and only if S o 7}, S, o T, are idem-
potent operator.

(3) S+TisaC,-idempotent if and only if (S, + 7)), (S, + T5,) are idempotent
operators, provided ST=0, 7S = 0.

The following Theorem 4.4 true for bicomplex matrix can be verified
easily.

Theorem 4.4: Let A =e¢, 4™+ e, be amatrix in C5". Then 4 is a C,-idempotent
matrix if and only if 4~ and A" are idempotent matrix.

Proof: Suppose 4 =¢e; 4™ + ezA+ is a C,-1dempotent matrix. Then by using Defini-
tion 4.2, we have

A*=4

& (e d e ) =Aie;+ Ase,

& S+ +2ed ) ed) =ed el

& el(A_)2+ez(A+)2=elA_+ €2A+ {e.e,=0, e%=el,e§=ez}
& (A=A and(d"’=4" {by Remark 2.2}

=

A~ and A" are idempotent matrices,

as required. Thus the proof of the theorem is complete.

Theorem 4.5: Let T=e, T, + The, € L] X, L] be a C,-idempotent operator and let
B, be the ordered basis for C{ such that [T1]3, =4, and [T}] 3, = A" ifand only if
A=e, A" +e,A" is C,-idempotent matrix.
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Proof: Suppose 7= T, € L{ %, L{ is a C,-idempotent operator. Use Definitions
2.4,4.2 and Theorem 4.3, we have

< T, and T, are idempotent operator

<> T basis B, suchthat[T|]g, =4 and [T}] 3, = A" are idempotent matrices
< e[T]p, telThlp,=ed + e,A" is C,-idempotent matrix {by Theorem 4.4}.
& A=e A" +eyA" is a C,-idempotent matrix,

as required. Thus the proof of the theorem is complete.

Theorem 4.6: A bicomplex matrix 4 = e; 4™+ e,4" € C5™" is a C,-idempotent
matrix if and only if e, 4 is a C,-idempotent matrix.

Proof: Suppose 4 = e¢;A~ + e, 4" is a C,-idempotent matrix. Use Definition 4.2
and Theorem 4.4, we have

A*=4
-2 _ 4— 2+
&S A7) =4 and(4) =4 {by Theorem 4.4}
Now, (e,d)’=ei[er (A7) +e5(AT)>+2474" e, e,
= el[el(A_)2 + eZ(A+)2] (Since e;.e, =0, e% =e, e% =e,)
=e/(e 4+ elA+)
=e,4

Hence e, 4 is a C,-idempotent matrix, as required. Thus the proof of the
theorem is complete.

The following Corollary 4.7 is immediate consequence of Theorem 4.6.

Corollary 4.7: A bicomplex matrix 4 = e;4~ + e,4" € C}™" is a C,-idempotent
matrix if and only if e, 4 is a C,-idempotent matrix.
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Theorem 4.8: Let A=e A" +e,A", B=¢,B” +e,B" € C;". Then 4 and B are C,-
idempotent matrices if and only if e; 4 + e, B is a C,-idempotent matrix.

Proof: Suppose 4 = e, A~ +e,A" and B= e, B~ + e,B" are C,-idempotent matrix.
Use Definition 4.2, we have

A>=Aand B*=B.
Now, (e,A+e,B)*=(e7A>+ 5 B>+ 2(4B)(e,e,))
=elA2+esz { e%=el,e§=ez, & e;.e,=0}
=e A +e,B.

Hence e A + e, B is a C,-idempotent matrix, as required. Thus the proof of
the theorem is complete.

Theorem 4.9: Let 4 =e,; 4, +e,4,be a C,-idempotent matrix. Then e;(/ - 4) is also
a C,-idempotent matrix, where /= eI+ e,I " is identity matrix of order n x n.

Proof: Suppose 4 =e; A + e,A4, 1s a C,-idempotent matrix. Use Definition 4.2, we
have

A=A,
Now, [e,(I- A =ej(I- 4)
= (I*+ 4% - 241)
=e(I+A4-24)  {-é=e}
=e (I - A).

Hence e (I - A) is a C,-idempotent matrix, as required. Thus the proof of
the theorem is complete.

The following Corollary 4.10 is immediate consequence of Theorem 4.9.

Corollary 4.10: Let A = e; A+ e,4" be a C,-idempotent matrix. Then e,(7 - 4) is
also a C,-idempotent matrix, where I=e; I~ +e,I " is identity matrix of order 1 x n.
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Conclusion:

In this paper, we explored the concepts of idempotent and nilpotent operators
within the framework of bicomplex spaces. We also analyzed their fundamental
properties and results. Additionally, we introduced the notion of idempotent
matrices in bicomplex spaces and derived several important results related to their
structure and properties.

The theorems establish a foundation for understanding bicomplex idempo-
tent and nilpotent operators, highlighting their algebraic and analytical properties.
These results extend matrix and operator theory to the bicomplex setting and
provide a basis for further spectral theory and functional analysis research. The
findings also pave the way for further research in spectral theory, functional analysis,
and applications involving bicomplex structures.
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