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Abstract:

This paper explores idempotent and nilpotent operators in bicomplex
spaces, focusing on their properties and behavior. We define idempotent and
nilpotent matrices in this framework and derive related results. Several theorems
are presented to establish conditions for the existence and behavior of bicomplex
idempotent and nilpotent operators and bicomplex idempotent matrices.
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1.  Introduction:

The theory of bicomplex numbers is a central focus of contemporary math-
ematical research, with significant progress in recent years. Numerous authors (see
[1, 9, 10, 11, 12]) have advanced the field, exploring diverse perspectives to elucidate
their properties and establish a consistent framework for the multivariate theory of
complex numbers. Recently, researchers studying matrices and linear operators (see
[2, 3, 4, 5, 8]) over various algebraic systems have made extensive contributions
to mathematics. Bicomplex numbers, introduced by Segre, extend the concept of
complex numbers and form a commutative ring with zero divisors. Their properties
find applications in functional analysis, quantum mechanics, and signal processing.

2.  Preliminaries and Notations:

This section provides an introduction to bicomplex numbers and explores
their key properties. It highlights several essential findings related to bicomplex
numbers.

Bicomplex numbers: Bicomplex numbers are an extension of complex numbers,
defined as:

= u1 + i1u2 + i2u3 + i1i2u4,

where u1, u2, u3 and u4 are real numbers with i1i2 = i2i1, i1
2 = i2

2 = -1.

The collection of all bicomplex numbers is represented by 2 and is referred
to as the bicomplex space. For simplicity, 1 stands for the set of complex numbers,
and 0 indicates the set of real numbers. The bicomplex space 2 can be charac-
terized in two distinct ways:

2 := {u1 + i1u2 + i2u3 + i1i2u4 : u1, u2, u3, u4  0}, and

2 := {z1 + i2z2 : z1, z2  1}.
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The set 2 contains zero-divisors, which makes it an algebra over 1 rather
than a field. Within 2, there are exactly four idempotent elements: 0, 1, e1, e2,
where e1 and e2 are two nontrivial idempotent elements, specified as follows:

         (1 + i1i2)                   (1 - i1i2)
e1 := ––––––– and e2 

:= –––––– .
   2            2

These elements stand out due to their orthogonality (e1e2 = e2e1 = 0) and
the fact that they add up to 1 (e1 + e2 = 1).

(1) Also, en
1 = e1 and en

2 = e2; n  .

Idempotent Representation and Equality Condition of Bicomplex Numbers:

Every bicomplex number  has unique idempotent representation as complex
combination of e1 and e2 as follows

 = z1 + i2z2 = (z1 - i1z2)e1 + (z1 + i1z2)e2

The complex numbers (z1 - i1z2) and (z1 + i1z2) are called idempotent com-
ponent of , and are denoted by    and   respectively (cf. Srivastava [11]). Thus,
the bicomplex number can be written as

= e1 +  e2.

Furthermore, for two bicomplex numbers  ,  2.

 =   if and only if = ,  = .

That is, bicomplex numbers are equal if and only if their corresponding
idempotent components coincide.

Definition 2.1: ([5], [Definition 1.4]): A bicomplex matrix of order m × n is written
as A = [ij]m×n, ij  2 with each element ij  2. The collection of all such
bicomplex matrices is denoted 2

m×n, defined as:

(2) 2
m×n =:    [ij] : ij  2; i = 1, 2,..., m,  j = 1, 2,..., n   .

With usual matrix addition and scalar multiplication, the set 2
m×n forms a

vector space over the field 1. The dimension of 2
m×n over 1 is immediately

given by
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(3) dim ( 2
m×n)( 1) = 2mn.

Furthermore, each bicomplex matrices A uniquely decomposes as
A = [ij]m×n  2

m×n can be decomposed uniquely as

(4) A = e1 A


 + e2 A
+,

where A = [ij]m×n,  A
+ = [+

ij]m×n  are complex matrices.

Remark 2.2: Analogous to the concept of equality of two bicomplex numbers,
two bicomplex matrices A = e1 A


 + e2 A

+, B = e1B + e2B+  2
m×n are equal if and

only if their idempotent component matrices are equal. That is,

(5) A = B if and only if A = B
 and A+

 = B+,

and the product, sum of two bicomplex matrices and bicomplex scalar product are
decomposed as follows:

(6) A . B = e1(A. B) + e2(A+. B+).

(7) (A + B) = e1(A + B) + e2(A+ + B+).

 (8)  .A = e1(A ) + e2(A+); 2.

Remark 2.3: ([4], [Remark 3.1]): To streamline notation, denote the set of all

1-linear maps from 1
n to 1

m by L1
nm, and set of all 1-linear maps from 2

n to

2
m by L2

nm. Both are vector spaces over 1, with dimensions:

(9) dim(L1
nm) = mn and dim(L2

nm) = dim C2
n . dim C2

m = 2n . 2m = 4mn.

Since 1 is a field, L1
nm  1

m×n. However 2 is a not field, L2
nm  2

m×n.
Instead, C2

m×n is a proper subspace of L2
nm, leading to the next definition.

Definition 2.4: ([4], [Definitions 3.2, 4.1]): For any given T1, T2 L1
nm, we can

define a map T : 2
n  2

m by the following rule:

T(1, 2,..., n) =: e1 . T1(1, 2,..., n) + e2 . T2(+
1, +

2,..., +
n).

Clearly T is a 1-linear map. T can also be represented by e1T1 + e2T2. Thus
the set of all such linear maps is the idempotent product L1

nm ×e L1
nm, i.e., we have
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(10) L1
nm ×e L1

nm =: {e1T1 +e2T2 L2
nm: T1, T2 L1

nm}.

For convenience, the set of all such type of T = e1T1 + e2T2 : 2
n  2

n

linear operators is denoted by L1
n ×e L1

n. The idempotent product L1
nm ×e L1

nm is a
subspace of L2

nm over the field 1. This indicates directly that L1
nm ×e L1

nm has
dimension 2mn. That is

(11) dim(L1
nm ×e L1

nm ( 1)) = 2mn.

Since 2
m×n and L1

nm ×e L1
nm  have same dimensions over 1, they are

isomorphic. Hence, the matrix expression for T = e1T1 + e2T2 is defined using the
ordered bases B1 for 1

n, and B2 for 1
m as follows:

                  B1                    B1                     B1(12) [T]B2 
 =: e1[T1]B2 

+ e2 [T2]B2 
.

                              B1                    B1Here, [T1]B2
 and [T2]B2

 are matrices of T1 and T2 for bases B1 and B2. If

1
n = 1

m, the matrix representation of T = e1T1 + e2T2 with respect to basis B for

1
n     is simplified to [T]B from [T]

B
B . Thus, it follows:

(13) [T]B = e1[T1]B  + e2[T2]B.

Proposition 2.5: ([4], [Proposition 3.3]): Let T, S L1
nm ×e L1

nm be any elements
such that T = e1T1 + e2T2 and S = e1S1 + e2S2. Then, we have

(1) T + S = e1(T1 + S1) + e2(T2 + S2).

(2) T  = e1(T1) + e2(T2); 1.

Theorem 2.6: ([5], [Theorem 2.7]): A linear operator T = e1T1 + e2T2 L1
n ×e  L1

n is
singular if and only if either T1 is singular or T2 is singular.

Previously, [4] introduced the “Idempotent method” for matrix representa-
tion a linear map of the form T = e1T1 + e2T2 : 2

n  2
m. This method provides a

systematic approach to establishing a one-to-one correspondence between
bicomplex matrices A = [ij]n×n and the linear operator’s T = e1T1 + e2T2 on finite
dimensional vector space 2

n. This method helps analyze specific classes of
matrices and operators in bicomplex spaces, offering a valuable approach for
further study. For a detailed discussion on the Idempotent Method, see [4]. With
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this foundation in place, we examine idempotent and nilpotent operators and
idempotent and nilpotent matrices in bicomplex spaces,which offer unique insights
into the structure of bicomplex linear algebra.

Theorem 2.7: ([4], [Theorem 3.4]): Let T = e1T1 + e2T2, S = e1S1 + e2S2 be any two
elements of L1

nm ×e L1
nm. Then, we have

(1) T = 0, if and only if T1 = 0, T2 = 0.

(2) T = S, if and only if T1 = S1, T2 = S2.

(3) S  T = e1(S1  T1) + e2(S2  T2), wherever composition defined.

Anjali [4], stated Theorem 2.7 and we build upon this by extending the
concept to the case where T n = 0    n  ; accordingly, we propose the following
theorems.

Theorem 2.8: Let T = e1T1 + e2T2 be a elements of L1
nm ×e L1

nm. Then,

T n = e1 (T1  T1  T1 . . . T1) + e2 (T2  T2  T2 . . . T2)

Or T n = e1T1
n + e2T2

n ;      n

Proof: To prove that Tn = e1T1
n + e2T2

n, for all n , using the principle of
mathematical induction.

Case 1: For n = 1, we have

T 1 = e1T1
1 + e2T1

2

Clearly, the statement holds.

Assume that the property holds for n = k, that is

T k = e1T1
k + e2T k

2

We need to show that it holds for n = k + 1, that is

T k+1 = e1T1
k+1 + e2T2

k+2

n times                                          n times
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Since

T k+1 = T k
 T

We substitute T k with its assumed form:

T k+1  =  [e1T1
k + e2T2

k] 
 [e1T1  + e2T2  ]

          =  e1(T1
k  T1) + e2(T2

k  T2)     {by Theorem 2.7}

          =  [e1 (T1  T1  T1 . . . T1) + e2 (T2  T2  T2 . . . T2)]

          = e1T1
k+1 + e2T1

k+1.

Using the principle of mathematical induction, the result holds for every
natural number n, i.e.

T n = e1T1
n + e2T2

n.

This proof holds for any linear operator T L1
n ×e L1

n.

Thus the theorem is proved.

Theorem 2.9: Let T = e1T1 + e2T2, S = e1S1 + e2S2 be any two elements of L1
nm ×

e L1
nm.  Then, we have

(1) T k = 0, if and only if T1
k = 0, T2

k = 0.

(2) T k = Sk, if and only if T1
k  = S1

k, T2
k = S2

k.

Proof: (1) We need to prove that for any element T = e1T1 + e2T2 L1
nm ×

e L1
nm, T k = 0 if and only if T1

k = 0, T2
k = 0.

Suppose,
T k = 0

 e1T1
k + e2T2

k = 0         {by Theorem 2.8}

 T1
k = 0 & T2

k = 0         {as T k is L.T. & by part (1) of Theorem 2.7}.

(2)  We need to prove that for any two elements T = e1T1 + e2T2, S = e1S1 + e2S2 
L1

nm ×e L1
nm, the equality T k = S k  T1

k = S1
k, T2

k = S2
k for some k  .
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Suppose,
T k = S k, for some k 

 e1T1
k + e2T2

k = e1S1
k + e2S2

k, for some k        {by Theorem 2.8}

 T1
k = S1

k and T2
k = S2

k, for some k   {as T k, S k are L.T. & by part (2)
of Theorem 2.7}.

Thus the theorem is proved.

3.  Bicomplex Nilpotent Operator and Nilpotent Matrices:

In this section, we define bicomplex nilpotent operators and explore related
results. For convenience, we introduce the terms 2-nilpotent operators and 2-
nilpotent matrices to specifically refer to nilpotent operators and matrices in
bicomplex spaces, respectively.

Definition 3.1: 2-nilpotent operator: A linear operator T L1
nm ×e L1

nm is said
to be a 2-nilpotent operator if T n = 0 for some positive integer n. The smallest
such n is called the index of T.

Definition 3.2: 2-nilpotent matrix: A matrix A = e1A  + e2A+  2
m×n is said to

be a 2-nilpotent matrix if there exists a positive integer n such that An = 0. The
smallest such n is called the index matrix A.

Theorem 3.3: A linear operator T = e1T1 + e2T2 L1
n ×e L1

n is a 2-nilpotent opera-
tor if and only if T1 and T2 are nilpotent operators.

Proof: Suppose T is a nilpotent operator. Then, there exists a natural number k
such that

Tk = 0 or (e1T1 + e2T2)k = 0

 T1
k = 0 and T2

k = 0       {by Theorem 2.9}

 T1 and T2 will be nilpotent operators.      {by Definition 3.2}

Conversely: Let T1, T2 L1
nm be two nilpotent operators. Then there exists natural

numbers k1, k2 such that

T1
k1 = 0 and T2

k2 = 0.
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This gives that

(14) T1
l = 0 and T2

l = 0      l  ; l k1, k2.

From Theorem 2.8 and let l = max(k1, k2), then

(T)l = (e1T1 + e2T2) l

       = e1(T1)l
 + e2(T2)l

        = e10 + e20 {as l  k1, k2 and by Equation 14}

       = 0.

Thus, we have a natural number l such that T l = 0. Hence, T will be a nil-
potent operator, as required. Thus, the proof of the theorem is complete.

Theorem 3.4: Let T = e1T1 + e2T2 L1
n ×e L1

n be a 2-nilpotent operator and let
B1 be the ordered basis for 1

n such that [T1]B1 = A, and [T2]B1 = A+ if and only if
A = e1A + e2A+ is 2-nilpotent matrix.

Proof: Suppose T = T2 L1
n ×e L1

n is a 2-nilpotent operator. We use Definition 2.4
and Theorem 3.3, we have

T1 and T2 are nilpotent operators

  n1, n2   such that T1
n1 = 0 and T2

n2 = 0

  basis B1 for 1
n such that ([T1]B1)

n1 = 0 and ([T2]B1)
n2 = 0 are nilpotent

matrices

 e1([T1]B1)n + e2([T2]B1)n = e1(A)n + e2(A+)n = 0

 ([e1T1 + e2T2]B1)n = An = 0        {     en
1 = e1, & en

2  = e2; n  }

Thus A = [e1T1 + e2T2]B1 is a 2-nilpotent matrix. Thus the proof of the
theorem is complete.

Theorem 3.5: Let T = e1T1 + e2T2 L1
n ×e L1

n be a 2-nilpotent operator. Then T1
and T2 are singular.
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Proof: Suppose T is a 2-nilpotent operator. Then, using ([6], Theorem 3.2.4),
([7], Theorem 1, p.n. 590), and Theorem 3.3, we have

T1 and T2 are nilpotent operator

 All eigenvalue of T1 and T2 are zero

  (T1 - 0I) is singular and (T2 - 0I) is singular

 T1 and T2 are singular.

Hence T1 and T2 are singular, as required. Thus, the proof of the theorem is
complete.

The converse of Theorem 3.4 is not true, as seen in the given example.

Example 3.6: Suppose T1(z1, z2, z3) = (z3 + z2, z3, 0) and T2(w1, w2, w3) = (w1, 0,
w3). It is easy to see that T1 and T2 are singular operators. For T1, we find T1

2 =
T1(T1(z1, z2, z3)) = T1(z3 + z2, z3, 0) = (z3 + 0, 0, 0), and T1

3 = T1(T1
2 (z1, z2, z3)) =

T1(z3 + 0, 0, 0) = (0, 0, 0). So, T1
3 = 0, the operator T1 is nilpotent with index 3

because T1
3 = 0, but T1

2  0. On the other hand, for all n  1 we have T2
n = T2  0,

which shows that T2 is not nilpotent. Hence, by Theorem 3.3, it follows that T is not
nilpotent.

Theorem 3.7: Let T = e1T1 + e2T2 L1
n ×e L1

n be a 2-nilpotent operator and let
T1 and T2 be two nilpotent operators of index k1 and k2 respectively. Then T is a

2-nilpotent operator of the index max(k1, k2) and vice versa.

Proof: Suppose T1 and T2 are nilpotent operators of index k1 and k2 respectively.
Then

T1
k1 = 0, T1

k1-1  0 and  T2
k2 = 0, T2

k2-1  0.

Case 1: If k1  k2. Then, we have

T1
k2 = 0

Now,

T k2 = (e1T1 + e2T2)k2

       = e1T1
k2 + e2T2

k2

       = 0. {as T1
k2 = 0 and T1

k2 = 0}
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and Tk2-1 = (e1T1 + e2T2)k2-1 = e1T1
k2-1 + e2T2

k2-10

{as T2
k2-1 0 and by Theorem 2.8}

Therefore T is a 2-nilpotent operator of index k2.

Case 2: If k2 < k1.Then we can easily prove that as previous T is a 2-nilpotent
operator of index k1. Hence T will be the 2-nilpotent operator of index max
(k1, k2).

Conversely: Suppose T is a 2-nilpotent operator of index k such that

T k = (e1T1 + e2T2)k = 0.

Now, using Theorem 3.3 we have T1 and T2 are nilpotent. There exist natural
numbers k1 and k2 such that

T1
k1 = 0, T1

k1-1  0 and  T2
k2 = 0, T2

k2-1  0.

Case 1: If k1  k2. Then

(T1)k2 = 0

Thus we have,

T k2 = e1(T1)k2 + e2(T2)k2 = 0

and

Tk2-1 = e1(T1)k2-1 + e2(T2)k2-1 0          (as T2
k2-1 0)

Therefore T is a 2-nilpotent operator of index k2.

Case 2: If k2 k1. Then we have

(T2)k1 = 0

Thus T k1 = e1(T1)k1 + e2(T2)k1 = 0

and

Tk1-1 = e1(T1)k1-1 + e2(T2)k1-1 0          (as T1
k1-1 0).

Therefore T is a 2-nilpotent operator of index k1.
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Since if k1 k2 and k2  k1, then T is a 2-nilpotent operator of index k2 and
k1 respectively.

Hence T is a 2-nilpotent operator of index Max(k1, k2) = k.

The following Corollary 3.8 is immediate consequence of Theorem 3.7.

Corollary 3.8: Suppose T = e1T1 + e2T2 L1
n ×e L1

n is a 2-nilpotent operator of
index m. Then at least one nilpotent operator T1 and T2 will be of index m.

4.  Bicomplex Idempotent Operator and Idempotent Matrices:

In this section, we define bicomplex idempotent operators and matrices and
explore their related results. For convenience, we introduce the terms 2-idempo-
tent operators and 2-idempotent matrices to refer specifically to idempotent
operators and matrices in bicomplex spaces.

Definition 4.1: 2-idempotent operator: A linear operator T = e1T1 + e2T2 L1
n

×e L1
n is said to be 2-idempotent operator or bicomplex idempotent operator if

T2 = T.

Definition 4.2: 2-idempotent Matrices: A Matrix A = e1A + e2A+
  2

n×n is
said to be 2-idempotent matrix or bicomplex idempotent matrix if A2 = A.

Theorem 4.3: A linear operator T L1
n ×e L1

n is a 2-idempotent if and only if T1
and T2 are the idempotent linear operator.

Proof: Suppose T = e1T1 + e2T2 L1
n ×e L1

n is a 2-idempotent linear operator. We
use Definition 4.1 and Theorem 2.7 throughout this proof.

T 2 = T

 e2
1T 2

1 + e2
2T 2

2 + 2e1e2T1T2   = e1T1 + e2T2

 e1T 2
1 + e1T 2

2 + e1T1 + e2T2 {     e1.e2 = e2.e1 = 0, e2
1 = e1 & e2

2 = e2}

 T1
2 = T1 and T2

2 = T2       {    T 2 is L.T. & by part (2) of Theorem 2.7}

 T1 and T2 will be idempotent operators,

as required. Thus the proof of the theorem is complete.


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The following properties of 2-idempotent operators provide fundamental
insight into their structure, composition, and algebraic significance.

Properties: Let T = e1T1 + e2T2 , S = e1S1 + e2S2 be any two elements of L1
n ×e L1

n.
Suppose S, T are 2-idempotent operators. Then we have:

(1) I - T is a 2-idempotent operator if and only if I - T1, I - T2 are idempotent
operator. Where I = e1I + e2I+ is the identity operator.

(2) S  T is a 2-idempotent operators if and only if S1  T1, S2  T2 are idem-
potent operator.

(3) S+T is a 2-idempotent if and only if (S1 + T1), (S2 + T2) are idempotent
operators, provided ST = 0, TS = 0.

The following Theorem 4.4 true for bicomplex matrix can be verified
easily.

Theorem 4.4: Let A = e1A + e2A+ be a matrix in 2
n×n. Then A is a 2-idempotent

matrix if and only if A and A+ are idempotent matrix.

Proof: Suppose A = e1A + e2A+ is a 2-idempotent matrix. Then by using Defini-
tion 4.2, we have

A 2 = A

 (e1A + e2A+)2 = A1e1 + A2e2

 e2
1(A)2 + e2

2(A+)2 + 2(e1A)(e2A+)  = e1A + e2A+

 e1(A)2 + e2(A+)2 = e1A + e2A+          {     e1.e2 = 0, e2
1 = e1, e2

2 = e2}

 (A)2 = A and (A+)2 = A+                  {by Remark 2.2}

 A and A+ are idempotent matrices,

as required. Thus the proof of the theorem is complete.

Theorem 4.5: Let T = e1T1 + T2e2 L1
n ×e L1

n be a 2-idempotent operator and let
B1 be the ordered basis for 1

n such that [T1]B1
 = A, and [T2]B1

 = A+ if and only if
A = e1A + e2A+ is 2-idempotent matrix.
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Proof: Suppose T = T2 L1
n ×e L1

n is a 2-idempotent operator. Use Definitions
2.4, 4.2 and Theorem 4.3, we have

 T1 and T2 are idempotent operator

  basis B1 such that [T1]B1 = A and [T2]B1 = A+ are idempotent matrices

 e1[T1]B1 + e2[T2]B2 = e1A + e2A+ is 2-idempotent matrix{by Theorem 4.4}.

 A = e1A + e2A+ is a 2-idempotent matrix,

as required. Thus the proof of the theorem is complete.

Theorem 4.6: A bicomplex matrix A = e1A+ e2A+
  2

n×n is a 2-idempotent
matrix if and only if e1A is a 2-idempotent matrix.

Proof: Suppose A = e1A + e2A+ is a 2-idempotent matrix. Use Definition 4.2
and Theorem 4.4, we have

A 2 = A

 (A)2 = A and (A+)2 = A+                       {by Theorem 4.4}

Now,  (e1A)2 = e2
1[e2

1(A)2 + e2
2(A+)2 + 2AA+ e1e2]

    = e1[e1(A)2 + e2(A+)2]       (Since e1.e2
 = 0, e2

1 = e1, e2
2 = e2)

    = e1(e1A  + e1A+)

    = e1A

Hence e1A is a 2-idempotent matrix, as required. Thus the proof of the
theorem is complete.

The following Corollary 4.7 is immediate consequence of Theorem 4.6.

Corollary 4.7: A bicomplex matrix A = e1A + e2A+  2
n×n is a 2-idempotent

matrix if and only if e2A is a 2-idempotent matrix.
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Theorem 4.8: Let A = e1A + e2A+, B = e1B + e2B+  2
n×n. Then A and B are 2-

idempotent matrices if and only if e1A + e2B is a 2-idempotent matrix.

Proof: Suppose A = e1A + e2A+ and B = e1B + e2B+ are 2-idempotent matrix.
Use Definition 4.2, we have

A 2 = A and B 2 = B.

Now,  (e1A + e2B)2 = (e2
1A2 + e2

2 B2 + 2(AB)(e1e2))

                = e1A2 + e2B2       {     e2
1 = e1, e2

2 = e2, & e1.e2
 = 0}

               = e1A  + e2B.

Hence e1A + e2B is a 2-idempotent matrix, as required. Thus the proof of
the theorem is complete.

Theorem 4.9: Let A = e1A1 + e2A2 be a 2-idempotent matrix. Then e1(I - A) is also
a 2-idempotent matrix, where I = e1I + e1I + is identity matrix of order n × n.

Proof: Suppose A = e1A1 + e2A2 is a 2-idempotent matrix. Use Definition 4.2, we
have

A 2 = A.

Now,  [e1(I - A)]2 = e2
1(I - A)2

                   = e2
1 (I

2
 + A2 - 2AI)

      = e1(I  + A - 2A)          {    e2
1 = e1}

                  = e1(I  - A).

Hence e1(I - A) is a 2-idempotent matrix, as required. Thus the proof of
the theorem is complete.

The following Corollary 4.10 is immediate consequence of Theorem 4.9.

Corollary 4.10: Let A = e1A + e2A+ be a 2-idempotent matrix. Then e2(I - A) is
also a 2-idempotent matrix, where I = e1I + e2I + is identity matrix of order n × n.


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Conclusion:

In this paper, we explored the concepts of idempotent and nilpotent operators
within the framework of bicomplex spaces. We also analyzed their fundamental
properties and results. Additionally, we introduced the notion of idempotent
matrices in bicomplex spaces and derived several important results related to their
structure and properties.

The theorems establish a foundation for understanding bicomplex idempo-
tent and nilpotent operators, highlighting their algebraic and analytical properties.
These results extend matrix and operator theory to the bicomplex setting and
provide a basis for further spectral theory and functional analysis research. The
findings also pave the way for further research in spectral theory, functional analysis,
and applications involving bicomplex structures.
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