ISSN 0047-6269

The Mathematics Education Volume - LV, No. 1, March 2021

Refereed and Peer-Reviewed Quarterly Journal

Journal website: www.internationaljournalsiwan.com

A Study of (4, 2)-jection Operator

by Anand Kumar, Research Scholar,
Department of Mathematics,
Jai Prakash University, Chapra - 841301
E-mail: 1989anandkumarsingh@gmail.com

&

L.B. Singh, Retd. Associate Professor,
Department of Mathematics,
Jai Prakash University, Chapra - 841301
E-mail: lbsdmjpu@gmail.com

Abstract:

In this paper, we use notion of projection operator on a linear space as the Simmons G. F. "Introduction to topology and modern analysis". In analogues to the above notions we have introduced a new type of operator called (4, 2)-jection on a linear space. It is a generalisation of a projection operator in the sense that every projection is a (4, 2)-jection, but a (4, 2)-jection is not necessarily a projection. We shall study (4, 2)-jection on \mathbb{R}^2 and consider different examples of (4, 2)-jection.

Keywords: Linear space, Projection, trijection, tetrajection, and (4,2)-jection.

1. Introduction:

A linear transformation on L into itself, we refer to it as a linear transformation on L. Also E is called the projection on M along N, where N is linear subspace of M.

Clearly $E^2 = E$.

In analogue to this definition, a trijection operator E has been defined by Dr. P. Chandra in his Ph.D. thesis (P.U. 1977) titled "Investigation into the theory of operator and linear spaces" by the relation $E^3 = E$, where E is a linear operator on a linear space L.

Clearly if E is a projection, then it is also a trijection for

$$E^2 = E \implies E^3 = E^2$$
, $E = E$, $E = E^2 = E$.

Dr. Rajive Kumar Mishra in his Ph.D. thesis (J. P. U. 2010) titled "Study of linear operators and related topics in functional analysis" has defined a linear operator E on a linear space L to be tetrajection if $E^4 = E$.

From the concepts of projection, trijection, tetrajection, we define analogously a new type of operator E called (4, 2)-jection if $E^4 = E^2$. It is a generalisation of projection operator in the sense that every projection is a (4, 2)-jection, but (4, 2)-jection is not a projection. This would be clear from the following examples of (4, 2)-jection gives below.

2. Examples of (4, 2)-jection:

We consider C^2 , where C is the set of all complex numbers. Let z be an element in C^2 . Thus let z = (x, y), where x, y belongs to C.

Let
$$E(z) = E(x, y) = (ax + by, cx + dy)$$
, where a, b, c, d are scalars.

By calculation, we find that

$$E^{2}(x, y) = E(a_{1}x + b_{1}y, c_{1}x + d_{1}y)$$
Where,
$$a_{1} = a^{2} + bc$$

$$b_{1} = ab + bd$$

$$c_{1} = ca + cd$$

$$d_{1} = bc + d^{2}$$

48 The Mathematics Education [Vol. LV (1), March 21]

And also,
$$E^{4}(x,y) = (a_{2}x + b_{2}y, c_{2}x + d_{2}y)$$
Where,
$$a_{2} = a^{4} + 3a^{2}bc + 2abcd + b^{2}c^{2} + bcd^{2}$$

$$b_{2} = a^{3}b + a^{2}bd + 2ab^{2}c + abd^{2} + 2b^{2}cd + bd^{3}$$

$$c_{2} = a^{3}c + a^{2}cd + 2abc^{2} + acd^{2} + 2bc^{2}d + cd^{3}$$

$$d_{2} = a^{2}bc + 2abcd + b^{2}c^{2} + 3bcd^{2} + d^{4}$$

If E is a (4, 2)-jection then $E^{4}(x, y) = E^{2}(x, y)$.

Hence,

$$a_2 = a_1 \Rightarrow a^4 + 3a^2bc + 2abcd + b^2c^2 + bcd^2 = a^2 + bc$$
 (2.1)

$$b_2 = b_1 \Rightarrow a^3b + a^2bd + 2ab^2c + abd^2 + 2b^2cd + bd^3 = ab + bd$$
 (2.2)

$$c_2 = c_1 \Rightarrow a^3c + a^2cd + 2abc^2 + acd^2 + 2bc^2d + cd^3 = ca + cd$$
 (2.3)

$$d_2 = d_1 \Rightarrow a^2bc + 2abcd + b^2c^2 + 3bcd^2 + d^4 = bc + d^2$$
 (2.4)

2.I: Now we consider in the following cases:

Case (1): Let
$$a = b = 0$$
, then

from
$$(2.1)$$
; $0 = 0$

from
$$(2.2)$$
; $0 = 0$

from (2.3);
$$cd^3 = cd$$

$$cd(d^2-1)=0$$

$$c = 0, d = 0, d = \pm 1$$

And from (2.4); $d^4 = d^2$

$$d^2(d^2-1)=0$$

$$d = 0, d = \pm 1$$

Subcase (1.i): When
$$c \neq 0$$
, $d = 0$

Then we get
$$E(x, y) = (0, cx)$$

 $E^2(x, y) = E(E(x, y)) = E(0, cx) = (0, 0)$
 $E^2(x, y) \neq E(x, y)$
Now, $E^3(x, y) = E(E^2(x, y)) = E(0, 0) = (0, 0)$
and, $E^4(x, y) = E(E^3(x, y)) = E(0, 0) = (0, 0)$
Clearly, $E^4(x, y) = E^2(x, y)$
Thus $E^4 = E^2$

Thus clearly in this case E is neither projection nor trijection, but it is (4, 2)-jection.

Subcase (1.ii): When c = 0, d = 0

Thus

Then we get
$$E(x, y) = (0, 0)$$

 $E^2(x, y) = E(E(x, y)) = E(0, 0) = (0, 0) = 0$
 $E^2(x, y) = E(x, y)$
Now, $E^3(x, y) = E(E^2(x, y)) = E(0, 0) = (0, 0) = 0$
and, $E^4(x, y) = E(E^3(x, y)) = E(0, 0) = (0, 0) = 0$
Clearly, $E^4 = E^3 = E^2 = E = 0$ zero operator.

Thus in this case E is projection, trijection, tetrajection, as well as (4, 2)-jection.

Subcase (1.iii): When c = 0, d = 1

Then we get
$$E(x, y) = (0, y)$$

 $E^{2}(x, y) = E(E(x, y)) = E(0, y) = (0, y)$
 $E^{2}(x, y) = E(x, y)$

The Mathematics Education [Vol. LV (1), March 21]

Now,
$$E^3(x, y) = E(E^2(x, y)) = E(0, y) = (0, y)$$

and, $E^4(x, y) = E(E^3(x, y)) = E(0, y) = (0, y)$
Clearly, $E^4 = E^3 = E^2 = E$.

Thus in this case E is projection, trijection, tetrajection, as well as (4, 2)-jection.

Subcase (1.iv): When c = 0, d = -1

Then we get
$$E(x, y) = (0, -y)$$

 $E^2(x, y) = E(E(x, y)) = E(0, -y) = (0, y)$
 $E^2(x, y) \neq E(x, y)$
Now, $E^3(x, y) = E(E^2(x, y)) = E(0, y) = (0, -y) = E(x, y)$
and, $E^4(x, y) = E(E^3(x, y)) = E(0, -y) = (0, y) = E^2(x, y)$
Clearly, $E^4 = E^2 \neq E$ and $E^3 = E$.

Thus in this case E is neither projection nor tetrajection, but it is trijection, as well as (4, 2)-jection.

Subcase (1.v): When $c \neq 0$, d = -1

Then we get
$$E(x, y) = (0, cx - y)$$

 $E^2(x, y) = E(E(x, y)) = E(0, cx - y) = (0, -cx + y)$
 $E^2(x, y) \neq E(x, y)$
Now, $E^3(x, y) = E(E^2(x, y)) = E(0, -cx + y) = (0, cx - y) = E(x, y)$
and, $E^4(x, y) = E(E^3(x, y)) = E(0, cx - y) = (0, -cx + y) = E^2(x, y)$
 $E^4(x, y) = E^2(x, y)$

Thus in this case E is neither projection nor tetrajection, but it is trijection, as well as (4, 2)-jection.

Subcase (1.vi): When $c \neq 0$, d = 1

Then we get
$$E(x, y) = (0, cx + y)$$

 $E^2(x, y) = E(E(x, y)) = E(0, cx + y) = (0, cx + y)$
 $E^2(x, y) = E(x, y)$
Now, $E^3(x, y) = E(E^2(x, y)) = E(0, cx + y) = (0, cx + y) = E(x, y)$
and, $E^4(x, y) = E(E^3(x, y)) = E(0, cx + y) = (0, cx + y) = E^2(x, y)$
 $E^4(x, y) = E^2(x, y)$.

Thus in this case E is projection, trijection, tetrajection, as well as (4, 2)-jection.

References:

- 1. Dunford, N. and Schwartz, J. (1967): "Linear operators part 1", Inter Science Publishers, Inc., New York.
- 2. Edward, R.E. (1965): "Functional Analysis", Holt, Rinehart and Winston, Inc., New York.
- Kelly, J.L., Namioka, I. and Others (1968): Linear topological spaces; (Van Nostrand), East - West Student Edition, India.
- Rudin, W. (1973): Functional Analysis, McGraw-Hill Book Company, Inc; New York.
- Simmons, G. F. (1963): "Introduction to topology and modern analysis; McGraw-Hill Book Company, Inc; New York.