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Abstract:

In this research paper, we have proposed the simplex method for
maximized objective functions in linear fractional programming. By the suitable
transformation, one can easily convert the linear fractional programming
problem into a linear programming problem. By the solution of linear program-
ming problem thus obtained, we can get an optimal solution of linear fractional
programming problem. In the proposed simplex method, the coefficients of the
variables under consideration in the transformed linear programming problem
are put into the form of a matrix. After applying suitable row transformations,
one can easily get the optimal solution of the transformed linear programming
problem as well as linear fractional programming problem.

[27]
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1. Introduction:

A Linear Programming Problem (LPP) involves optimizing (maximizing or
minimizing) a linear objective function subject to a set of linear equality or
inequality constraints. A Linear Fractional Programming Problem (LFPP) deals
with optimizing a ratio of two linear functions, typically representing efficiency or
cost-benefit scenarios. While LPP is solved using methods like the simplex
algorithm, LFPP often requires transformation (e.g., Charnes-Cooper method) to
convert it into a standard LPP form. The graphical and simplex methods are two
common approaches for solving linear programming problems. When dealing with
two-variable problems, the graphical method is simple and effective. However, as
the number of variables or constraints increases, especially in complex cases,
computational methods like the simplex algorithm become more practical. The
simplex method is particularly suitable for computer-based solutions and is widely
used to find the optimal value of a linear objective function subject to linear
constraints. It is especially useful for solving problems that involve three or more
variables.

2. Method:

The simplex technique is a systematic approach for determining the optimal
value of a maximization problem. The process involves the following key steps:

1. Construct the initial simplex tableau by introducing slack variables to
convert inequalities into equalities.

2. Identify the pivot element:

(a)  Examine the first row to find any negative coefficient, indicating the
        entering variable.

(b)  For the selected column, compute the ratio of the rightmost column
        (solution values) to the corresponding column entries.

(c)  Choose the smallest non-negative ratio as it indicates the pivot row.

28 Applied Science Periodical [Vol. XXVII (2), May 25]



3. Perform the pivot operation to generate a new tableau.

4. Repeat the process of identifying the pivot and updating the tableau until
there are no more negative values in the first row.

5. Interpret the final tableau to obtain the optimal solution.

3. Problem Formulation:

A typical maximization problem is examined in this paper. Prior to solving,
the following conditions must be ensured:

(a) The objective function z should be maximized.

(b) All decision variables, x1, x2, x3,..., must satisfy non-negativity constraints,
i.e., they must be greater than or equal to zero.

(c) Each constraint in the model should be expressed in the form of a “less
than or equal to” inequality ().

4. Linear-Fractional Programming and Charnes-Cooper Transformation:

A linear-fractional program is an extension of the linear program in which
the objective function is expressed as a ratio of two affine functions. The optimiza-
tion is subject to the same type of linear constraints:

maximizex   ––––––

subject to    Ax  b,

           x  0,

where d  n, and, are scalar constants.

The Charnes-Cooper Transformation:

The Charnes-Cooper transformation is a variable substitution technique
that transforms a linear-fractional program into a linear program. Define new
variables:

cTx + 

dTx + 
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y  = –––––– . x, t = ––––––  .

Assuming the feasible region is non-empty and bounded, the above linear-
fractional program can be rewritten as the equivalent linear program:

maximizey, t   c
Ty + t

subject to      Ay  bt,

           dTy + t = 1,

           t  0.

Once the optimal values of y and t are determined, the original variable x
can be recovered using the relation:

x = – .

5. Example: Linear Fractional Programming Problem-

Maximize:

z = –––––––

Subject to:
  x1 + 2x2  3,

3x1 + 2x2  6,

       x1, x2  0.

Solution: Let 2x1 + 7 = –– and y = y0 x, then

Maximize:
z = 6y1 + 5y2

Subject to:
  y1 + 2y2 - 3y0  0,

3y1 + 2y2 - 6y0  0.

      1

dTx + 

     1

dTx + 

  y
 t

6x1 + 5x2

 2x1+ 7

 1
 y

0
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Also,
2y1 + 7y0 = 1,       y1, y2, y0  0.

Simplification:

Maximize:
z = 6y1 + 5y2

2y1 + 7y0 = 1,       y1, y2, y0  0.

y0 = –––––

Subject to:
  y1 + 2y2 - 3y0  0,

3y1 + 2y2 - 6y0  0.

On substituting the value of y0 in both equations above and introducing slack
variables y3, y4 0,

13y1 + 14y2 + y3 = 3,

33y1 + 14y2 + y4 = 6.

Simplex Tableau:

  z    y1   y2   y3   y4   b

  1   -6   -5   0    0    0

  0   13  14   1    0    3

  0   33  14   0    1    6

Selection of Pivot:

The most negative indicator in the first row is -5, which corresponds to the
column with value 14 in the constraint rows. To determine the pivot row, we
compute the test ratios (right-hand side divided by the corresponding entry in the
pivot column):

1 - 2y1

    7

T0 =
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––  0.214,    ––  0.428

Since 0.214 is the smallest non-negative ratio, the pivot element is 14 in
the first constraint row (i.e., the second row of the tableau).

Elimination by Row Operation -I:

R1  R1 + –– R2,      R3  R3 - R2

1       ––     0     ––     0     ––

0      13     14     1      0      3

0      20      0     -1      1      3

Pivot column: –––  test ratios:

 –– = 0.23,      –– = 0.15     pivot = 20

Elimination by Row Operation -II:

R1  R1 + ––– R3,      R2  R2 - ––  R3

Final tableau:

1     0      0     –––     –––     –––

0     0     14     ––      –––      ––

0     20    0      -1         1         3

Solution:

y1 = ––,    y2 = ––,      y3 = 0,    y4 = 0,    z = –––

  3
14

  6
14

  5
14

-19
 14

  5
14

1 5
14

T1 =









-19
 14

  3
13

  3
20

13
20

 19
280

   81
 280

  19
 280

 357
 280

 33
 20

 21
 20

-13
  20

 ––

 14
357
280

 21
 20

T2 =









  3
20
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Final Solution:

2y1 + 7y0 = 1,     y1, y2, y0  0.

On putting the value of y1 in above equation,

y0 = ––

We know, y = y0 x,

x1 = ––  = –,    x2 = –– = –,      z = ––– =  ––

6. Verification of the Solution of the Problem under consideration by different
methods:

6.1  Simplex Method for Linear Fractional Programming Problem:

Here we consider an example to explain the simplex procedure:

Max Z = ––––––

Subject to:

  x + 2y  3

3x + 2y  6

      x, y  0

Solution: After introducing the slack variables s1  0 and s2  0, the given problem
becomes in the standard form:

Max z = ––––––  =  –––     (say)

  x + 2y + s1 + 0s2 = 3

s.t. 3x + 2y + 0s1 + s2 = 6

              x, y, s1, s2  0

  1
10

3
2

3
4

357
280

51
40

y1
y0

y2
y0

6x + 5y

2x+ 7

6x + 5y

2x+ 7
z(1)

z(2)
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By regular simplex method, we get initial table:

cj                 6       5       0       0

Cj                 2       0       0       0

    Basic Var.               CB      cB        xB      x      y      s1      s2      Min Ratio

 s1                0       0       3       1     2       1     0           – = 3

 s2                0       0       6       3     2       0     1           – = 2

Z (1) = CB xB +  = 0                    -6   -5       0     0      
j
(1)

Z (2) = CB xB +  = 7                   -2    0         0     0     
j
(2)

    Z = ––– = 0

Table 1: Initial Simplex Tableau

From the above table, we compute: Z = ––– = 0

Now we find:

j
(1) = cB xj - cj    and j

(2) = CB xj - Cj

1
(1) = cB x - c1 = (0, 0)(1, 3) - 6 = -6,

2
(1) = cB y - c2 = (0, 0)(2, 2) - 5 = -5,

1
(2) = CB x - C1 = (0, 0)(1, 3) - 2 = -2,

2
(2) = CB y - C2 = (0, 0)(2, 2) - 0 = 0,

j = Z (2)(Zj
(1)- cj) - Z

(1)(Zj
(2)- Cj)

1 = (7)(-6) - (0)(-2) = -42

2 = (7)(-5) - (0)(0) = -35.

z(1)

z(2)

3
1
6
3

z(1)

z(2)
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We see that 1 is minimum, hence x is an entering vector.

For the outgoing vector, we calculate:

min   –––   when i = 1;

min   –––   = min   –, –   = 2.

This corresponds to x21, so s2 is the outgoing vector. The key element is 3.

cj             6         5        0       0

Cj             2         0        0       0

    Basic Var.           CB        cB        xB       x      y     s1     s2       Min Ratio

 s1            0         0        1       0      –     1    -–        –– = –

 x            2         6        2       1      –     0     –         –– = 3

      Z (1) = 12                                0      1     0     0      
j
(1)

      Z (2) = 11                            -2/3  4/3     0     0     
j
(2)

 Z = ––– = ––                                                                      
j

Table 2: Second Simplex Tableau

1
(1) = cB x - c1 = (0, 6)(0, 1) - 6 = 0,

2
(1) = cB y - c2 = (0, 6)(0, 1) - 5 = 1,

1
(2) = CB x - C1 = (0, 2)(4/3, 2/3) - 2 = -2/3,

2
(2) = CB y - C2 = (0, 2)(4/3, 2/3) - 0 = 4/3,

1 = (11)(0) - (12)(-2/3) = 8

2 = (11)(1) - (12)(4/3) = -5.

xBi
xij

xB1
x1j

3
1

6
3











 






z(1)

z(2)
12
11

4
3
2
3

1
3

1
3

3
4




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So 2 is minimum, hence y is an entering vector.

For outgoing vector

min   –––   = min   –, –   = –

cj             6         5        0       0

Cj             2         0        0       0

    Basic Var.           CB        cB        xB       x      y      s1      s2

 y            0         5        –       0      1      –    -–

 x            2         6        –       1      0   - –     –

      Z (1) = ––                                0      0      0     0 

      Z (2) = 10                                0      0      0     0

 Z = ––– = ––

Table 3: Final Tableau

1
(1) = cB x - c1 = (5, 6)(0, 1) - 6 = 0,

2
(1) = cB y - c2 = (5, 6)(1, 0) - 5 = 0,

1
(2) = CB x - C1 = (0, 2)(0, 1) - 2 = 0,

2
(2) = CB y - C2 = (0, 2)(1, 0) - 0 = 0.

Since all j  0, thus the solution is optimal at this level:

x = –,    y = –,    max z =  ––.

z(1)

z(2)

51
40

3
4

3
4

1
2

1
4

51
 4

3
2

1
2

3
2

3
4

51
40
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



6.2   Solution of problem by Charnes Cooper Transformation Method:

Maximization Problem:

Maximize z = –––––––

Subject to:
x1 + 2x2  3,    3x1 + 2x2  6,    x1, x2  0.

Let 2x1 + 7 = –– and y = y0 x, then

Maximize z = 6y1 + 5y2

Subject to:

–– + 2 –– 3 y1 + 2y2 - 3y0  0,

3 –– + 2 –– 6 3y1 + 2y2 - 6y0  0,

2x1 + 7 = –– 2y1 + 7y0 = 1,

y1, y2  0,     y0 > 0.

Now by introducing slack variables y3, y4  0 and an artificial variable w1  0
in the above LPP, and to minimize the infeasibility form w = w1, using the two-
phase simplex method we have:

Simplex Table No. 1

    Basic Variable      y0        y1       y2       y3      y4       w1    Constant

   y3             -3        1       2       1        0         0           0

   y4             -6        3       2       0        1         0           0

   w1              7        2       0       0        0         1            1

   z              0        6       5       0        0         0            0

   w             -7      -2       0       0        0        -1          -1

6x1 + 5x2

 2x1+ 7

 1
 y

0

 y1
 y

0

 y2
 y

0

 y1
 y

0

 y2
 y

0

 1
 y

0




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Simplex Table No. 2

    Basic Variable      y0       y1         y2       y3      y4     w1    Constant

   y3              0    13/7      2        1       0                     3/7
   y4              0    33/7      2        0       1                     6/7
   y0              1      2/7      0        0       0                     1/7
   z              0       6         5        0       0                       0
   w              0      0         0        0       0       drop     -1

Simplex Table No. 3

    Basic Variable      y0       y1       y2           y3         y4       w1    Constant

   y3              0      0    40/33       1      -13/33                1/11
   y1              0      1    14/13       0         7/33                 2/11
   y0              1      0     -4/33       0       -2/33                 1/11

   z              0      0     27/11      0       14/11               12/11

Simplex Table No. 4

    Basic Variable      y0       y1       y2        y3        y4     w1     Constant

   y2              0       0       1                                            3/40
   y1              0       1       0                                            3/20
   y0              1       0       0                                            1/10

   z              0       0       0     81/40   .475                51/40

Optimal Solution:

From the last table, all values of z are positive and y0 = 1/10  0, so the
optimal solution of the fractional programming problem is:

x1 = ––  = –– = –– × 10 = –,    x2 = ––  = –– = –– × 10 = –,








  3
20

y1
y0

y2
y0

  3
 2

  3
40

  3
 4

  3
 20
  1
 10
 ––

 ––   3
 40
  1
 10

 ––

 ––
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                                      6 × – + 5 × –
Maximize  z = ––––––––––– = ––  = –– .

                                         2 × – + 7

6.3  Solution of Problem by LINGO Software:

LINGO/WIN64 21.0.38 (22 Apr 2025), LINDO API 15.0.6099.233

Licensee info: Eval Use Only

Local optimal solution found.
Objective value:         1.275000
Infeasibilities:         0.000000
Extended solver steps:      5
Best multistart solution found at step:      1
Total solver iterations:    24
Elapsed runtime seconds: 0.14

Model Class: NLP

Total variables:           2
Nonlinear variables:           2
Integer variables:           0

Total constraints:           5
Nonlinear constraints:           1

Total nonzeros:           8
Nonlinear nonzeros:           2

    Variable           Value           Reduced Cost
         X1        1.500000               0.000000
         X2        0.7500000               0.000000

        Row                 Slack or Surplus              Dual Price
           1        1.275000               1.000000
           2        0.000000               0.2025000
           3        0.000000               0.4750000E-01
           4        1.500000               0.000000
           5        0.7500000               0.000000

Figure 1: LINGO Report

The LINGO report provides a computational verification of the results
obtained using our proposed method. The solution derived through LINGO aligns
perfectly with the outcomes produced by other methods, reinforcing the accuracy
and reliability of our approach. This consistency demonstrates the robustness of
the method in solving the given optimization problem.

 3
 2

 3
 4

 3
 2

51
40

 ––

 10

 51
  4

       Applied Science Periodical [Vol. XXVII (2), May 25]            39



7.  Result:

The optimal value is z =     . This result represents the solution to the

maximization problem, obtained using the simplex method after converting the
linear fractional programming problem.

Conclusion:

This research employs the simplex method to address a maximization
problem. The simplex approach is a systematic technique for identifying the
optimal solution to maximization challenges. It ensures that the solution adheres
to the specified constraints while achieving the highest possible value. For the
simplex method to be effective, the given problem must first be converted into its
standard form. Following the outlined steps in this study enables the derivation of
an optimal solution.
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